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Introduction

What is Expected Transmission Time (ETT)?

A B
pf = 0.2

pf = 0.1
ETT =

PacketSize

Bandwidth
× 1

(1 − pf )(1 − pr )

Used as a metric for wireless link quality
No trivial way to simulate ETT values

What is Principal Component Analysis (PCA)?

A matrix decomposition method, used widely in machine learning to
reduce dimension of data

Our Goal: Build a model for ETT simulation

Our Approach: Using PCA to analyze captured ETT values from a
real wireless network
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Trace Data

The ETT trace was collected at UCSB wireless mesh network
802.11a/b
19 nodes, 192 links
located on 5 floors of a building

Exploring wireless link quality
using principal component analysis
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Abstract—Expected Transmission Time (ETT) is a useful
link quality metric in wireless networks. Principal Component
Analysis (PCA) is a powerful method in data analysis. In this
paper, we explored the capability of PCA when applying to ETT
trace from a wireless mesh network. We demonstrated that PCA
can be used to efficiently approximate large volume of ETT
values. In particular, ETT trace for each links can be expressed
as a combination of two basis vectors. We also showed how to
simulate ETT for a given network topology with and without
known ETT trace data.

I. INTRODUCTION

Expected Transmission Time (ETT) as a metric of wireless
link quality has been used for a long time [1]. It is derived
from Expected Transmission Count (ETX) [2] by multiplying
ETX with the time needed to transmit the whole packet on
the link ETT = S/B ∗ETX , where S and B are packet size
and link bandwidth respectively. ETX, in turn, is calculated as
ETX = 1/(1−p), where p is the probability of not successful
in transmission on a link. The value of p itself is determined as
p = 1− (1−pf )(1−pr), where pf and pr are the probability
of failure on the forward and reverse directions respectively.

In modeling wireless link quality, one can simulate the
value of ETT by assuming some error distribution on the link.
However, the value of ETT is more complex in its dynamic
nature, because the wireless link quality suffers path loss,
multi-path fading, static and mobile obstructions. In this paper
we aim to find a efficient way to extract the dynamic feature
from an ETT trace and use that to simulate the ETT value.
The structure of the paper is as follows. In section II we
describe the data and refer to the original source of the data.
In section III we present the method used to analyze the trace
data. Section IV is dedicated to present our findings while
we explored the data. The fourth section shows how can we
simulate ETT values. At last, we point out some limitations
of our work and suggest future works in section VI.

II. TRACE DATA

The datasets were collected by authors of [3] at the UCSB
mesh network. The authors used these ETT trace data to test a
design of a new routing protocol. However, we use the data in
a different way. We tried to extract information from the trace
data and use the extracted data to simulate the ETT value.

MeshNet is an indoor 802.11a/b network with 19 nodes,
93 (undirected) links. The original data consists of three ETT
datasets, which are collected at three different times. All the
results shown in this paper are only for the first dataset because
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Fig. 1. Logical network topology

TABLE I
NEIGHBORS LIST

Node Degree Neighbors

01 3 06 10 14
02 12 03 04 05 06 08 09 10 12 13 14 15 17
03 5 02 04 05 14 15
04 8 02 03 05 06 09 14 15 16
05 11 02 03 04 06 08 09 11 14 15 16 17
06 10 01 02 04 05 09 10 14 15 17 19
07 9 09 10 11 13 15 16 17 18 19
08 7 02 05 09 13 15 16 19
09 14 02 04 05 06 07 08 10 11 13 14 15 16 17 19
10 11 01 02 06 07 09 14 15 16 17 18 19
11 8 05 07 09 12 13 15 16 19
12 5 02 11 13 16 18
13 11 02 07 08 09 11 12 15 16 17 18 19
14 12 01 02 03 04 05 06 09 10 15 16 17 19
15 15 02 03 04 05 06 07 08 09 10 11 13 14 16 17 19
16 14 04 05 07 08 09 10 11 12 13 14 15 17 18 19
17 12 02 05 06 07 09 10 13 14 15 16 18 19
18 7 07 10 12 13 16 17 19
19 12 06 07 08 09 10 11 13 14 15 16 17 18

the other two datasets gives similar results. Figure 1 depicts
the topology of the network at the time the first dataset was
collected. Table I shows the list of neighbors for each node.
Trace files are generated each minute. One trace file contains
captured information in text lines. Each line starts with node
IP address and follows by pairs of IP address and measured
ETT value for each neighbor node.

Now we briefly summarize how ETT values were measured.

There are 3 datasets collected at different times.

Preprocessing:
Convert from raw data to a set of matrices containing ETT values
Get rid of loss data: use largest continuous block
Averaging with a window size of 10min
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Apply PCA to ETT traces

time →
links ↓

Trace at one node X(mxn) D(mxn) X̄(mxn) E(mxk) GT(kxn) X̄(mxn) F(mxk) B=GT(kxn)

C(nxn)
=cov(D)

W(mxn)
=eignvec(C)

G(nxk) : first k
columns of W

avg
−−→ mean−−−→ + PCA−−→ × + regr

−−→ ×

eigen
−−−→

trunc−−−→ E = D× GAt each node of the network,
we have: X ≈ F × B
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coefficients of link i

for this vector

for this vector

basis vectors

Xi =
∑k

j=1 Fi,j × Bj
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Choosing k

We define two indicators to estimate the amount of information lost:

Coverage α is defined as the cumulative sum of the selected
normalized eigenvalues

α =
k∑

u=1

V[u]/
n∑

u=1

V[u]

Loss β is the significance of the last selected eigenvalue

β = V[k]/V[1]

If we can choose k to be significantly smaller than n (while we still have
large coverage α and small loss β), then we can efficiently represent the
matrix X.
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Approximation results for k = 2

50 100 150 200 250 300 350
0

1

2

3

4

5
Original data

Time

E
T

T

 

 

02

03

05

06

09

14

15

16

5 10 15 20 25 30 35
0

1

2

3

4

5
Original data

Time

E
T

T

 

 

02

03

05

06

09

14

15

16

5 10 15 20 25 30 35
0

1

2

3

4

5
Approximated data

Time

E
T

T

 

 

02

03

05

06

09

14

15

16

5 10 15 20 25 30 35
0

1

2

3

4

5
Final approximated data

Time

E
T

T

 

 

02

03

05

06

09

14

15

16

(a) (b)

(c) (d)

Node 4 as an example (α = 98%, β = 2.5%): (a) Original ETT trace (b) After averaging (T=10 min)

(c) Approximated ETT values before regression (d) Approximated ETT values after regression
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Basis vectors from one node

Now, each link from this node can be expressed as a linear combination of
two basis vectors B1 and B2.
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(a) Basis vectors and (b) Final coefficients for Node 4. Links with similar dynamics are highlighted with red color

The first basis vectors are quite stable, while the second basis vectors
contain time-varying character.
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Basis vectors from all nodes
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(a) First and (b) second basis vectors from all nodes
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 first basis vectors: µ = −0.17  σ = 0.02

second basis vectors: µ = 0.00  σ = 0.17

1st basis vectors: mean

1st basis vectors: std

2nd basis vectors: mean

2nd basis vectors: std

Mean and standard deviation over time

Most time variations are expressed by second basis vectors.

First basis vectors have almost zero variance (over time)

Second basis vectors have almost zero mean (over time)
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Autocorreleation and cross-correlation
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The autocorrelation has small sidelobes and cross-correlation values are small. This supports our assumption about
independence.
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Distribution of Basis vector components
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(a) CDFs of first basis vectors from different nodes (b) CDFs of second basis vectors from different nodes
(c) Combined CDF of first basis vectors & fit (d) Combined CDF of second basis vectors & fit
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Coefficients of all links
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 1st coef: µ = −10.43  σ = 8.21

 2nd coef: µ = 0.13  σ = 1.16
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Distributrion of Coefficients
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Histogram of (a) all first coefficients (b) all second coefficients
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Average error of all links

We tried to apply the same PCA method to the entire set of ETT traces
for all links (instead of only those associated with one node). However,
with the same value of k = 2, we get only α = 93% and β = 1.6%
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Simulation procedure
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First cluster contains
70% of pairs and
forms a triangular
region

Second cluster
contains 30% of
pairs, which scatter
between boundaries
Um,Dm, Lm, Rm

Simulation procedure for each link

Let ρ = 0.7 be the fraction of coefficients from
the first group, s = 0.2 be the slope of the lines
that form the triangular region;
Lm = −30, Rm = −12.5 be the boundary for
the first coefficient; Um = 5,Dm = −5 be the
boundary for the second coefficient.

Generate a uniformly distributed random number
x in [0,1] for each link. If x < ρ then we
generate coefficients in the triangular region.
Otherwise we generate coefficients in the
rectangular region as follows.

Case 1 – triangular region: Generate f1 uniformly
distributed in (Rm, 0). Calculate the range for f2
as the segment of the vertical line at f1 truncated
by two lines. Let f2D = s ∗ f1, f2U = −s ∗ f1.
Then generate f2 that is uniformly distributed in
(f2D , f2U ).

Case 2 – rectangular region: Generate f1 that is
uniformly distributed in (Lm, Rm) and f2 that is
uniformly distributed in (Dm,Um).
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Simulated ETT values for a simple network
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Conclusion

We have shown that:

PCA is very useful to reduce the size of ETT trace;

We can efficiently approximate ETT data of all links at any node
using only two basis vectors and two coefficients for each link;

The first basis vector can be considered as a constant and the second
as one derived from a normal distribution with a zero mean;

The marginal distributions of coefficients corresponding to first basis
vectors have an inverse Gaussian distribution, while those
corresponding to second basis vectors have a nearly Gaussian
distribution;

It is possible to generate the ETT traces for a given network using our
observations or with a combination of existing ETT trace data from
that network using only a few parameters.
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Open Issues and Future Work

There are several assumptions that have not been tested carefully
(e.g., independence)

Analyzing the trace data without taking the average

Try different datasets

Compare with alternative approaches for analyzing and modeling the
ETT traces

Exploit spatial correlation between ETT values
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