Mini-Sink Mobility with Diversity-Based Routing in Wireless Sensor Networks.

ACM 8th International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN).

D. Fotue, F. Melakessou, H. Labiod and T. Engel

University of Luxembourg & Telecom ParisTech

October 31 - November 4, Miami, FL, USA, 2011.

Outline

Wireless Sensor Network (WSN)

- Definition and Constraints
- Problem definition and Proposition

<ロト <四ト <注入 <注下 <注下 <

2 Network Model

- Mini-Sink Mobility
- Forwarding procedure

3 Analysis and Results

- Analysis
- Results

Summary & Perspective

- Summary
- Perspective

Definition and Constraints Problem definition and Proposition

WSN : Definition and Constraints

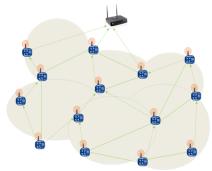
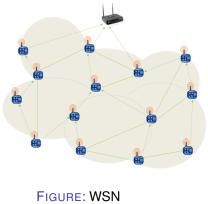


FIGURE: WSN

Definition

- Ad hoc, consist of small devices, known as sensors
- Scattered over an area,

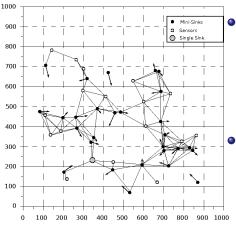

Constraints

- Low finite Battery,
- Limited memory,
- Communication,
- Computation power...

Definition and Constraints Problem definition and Proposition

Problem definition

Problem


- The data collection rate dominates the data forwarding rate.
- Sensors in the vicinity of the sink collect more data.
- Congestion starts to build at these sensors, increases data loss.
- Energy reserves of sensors around the sink becomes quicky depleted.

< □ > < □ > < □ > < □ >

Definition and Constraints Problem definition and Proposition

Proposition

FIGURE: Mini-Sinks mobility

• A model based on Mini-Sinks.

- MSs are mobile and move in the sensors field according to an arbitrary mobility model to :
- Maintain a fully-connected network, collecting the data.

Data forwarding

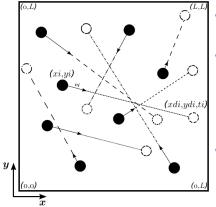
- *ECRP* is implemented in *MS*s and sensors in order to generate a set of multiple paths.
- The traffic can be distribut
 over the network.

Mini-Sink Mobility with Diversity-Based Routing

Definition and Constraints Problem definition and Proposition

Proposition

Assumptions


- Sensors and MSs are deployed randomly.
- Sensors are homogeneous.
- Sensors are fixed and are responsible for sensing the nearby environment and forward them to the most easily accessible MSs
- MSs are responsible for collecting the data from sensors and forward towards the sink
- MSs have an unlimited energy

< 🗇 🕨

Mini-Sink Mobility Forwarding procedure

Mobility Model

- Each *MS* moves with a velocity [*v_{min}..., v_{max}*].
- When a *MS* reaches the locality radius of the sink, it stays there for a time *t_i*, selected in the range [*t_{min}..., t_{max}*].
- After this interval, the MS restarts its displacement process by selecting a new location, and so on.

FIGURE: MSs mobility

Mini-Sink Mobility Forwarding procedure

ECRP : Algorithm overview

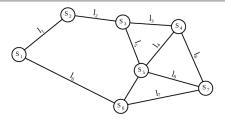
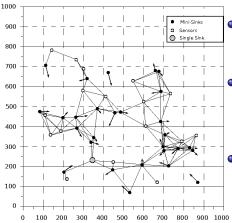


FIGURE: Network topology

TABLE: Path discovery between sensors S_1 and S_7

Path	ConnectionHop Count	
	Links	
<i>P</i> ₁	$S_1 S_6 S_7$	2
<i>P</i> ₂	$S_1 S_2 S_3 S_5$	<i>S</i> ₇ 4
<i>P</i> ₃	$S_1 S_6 S_5 S_4$	<i>S</i> ₇ 4
<i>P</i> ₄	$S_1S_2S_3S_4$	<i>S</i> ₇ 4

Each sensor uses each path in turn for the transmission of successive packet to MSs.



D. Fotue, F. Melakessou, H. Labiod and T. Engel

Mini-Sink Mobility with Diversity-Based Routing

Mini-Sink Mobility Forwarding procedure

Routing

- Each *MS* broadcasts a packet to all sensors in its locality radius.
- Each sensor in direct communication with *MS*s calculates the lowest cost path using *ECRP*.
- When each MS arrives in the locality radius of the sink, it stays for a time t_i .

FIGURE: Mini-Sinks mobility

Analysis Results

Analysis parameters and Criteria

• Parameters analysis

Parameters	Description	Value
E	Full Energy of Sensor	10 ⁴ Joules (J)
L	Simulation area	$1000m \ X \ 1000m$
Traffic	Packet lengths	2 Kbits
D	Locality Radius (m)	75m
Movement	Random Way Point	
vmax	Maximum velocity	10_{mps}
t_i	Time Needed (s)	Between $[0, 3_s]$
n	Number of Sensors	Between [5, 100]
N	Mini-Sinks	Between [1, 35]

Analysis criteria

- How many *MS*s should be used to have a fully-connected network.
- How many MSs should be used to reduce the amount of packets broadcast
- How much benefit can be obtained in terms of broadcast latency.
- The effect of multiple paths on energy consumption.

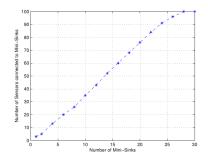
< □ > < 同 > < 回 > < 回

Analysis Results

Communication modes

Multi-MS mode

- Each sensor is allowed to connect itself simultaneously to several *MS*s in order to increase its connectivity capabilities. The sensor under consideration stores and updates the lowest cost path towards each accessible MS.
- Multiple paths MS mode
 - Multiple paths are used between a sensor and the closest *MS*s. These paths are discovered using *ECRP*.
- Point-to-point mode
 - Two *MS*s want to establish a connection with each other. The lowest cost path is discovered and updated when the network topology changes. Otherwise, packets always follow a single path if the topology stays stable.

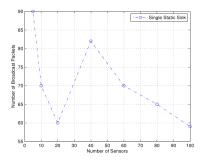

11/21

イロト イ理ト イヨト イヨト

Wireless Sensor Network (WSN) Network Model Analysis and Results

Analysis Results

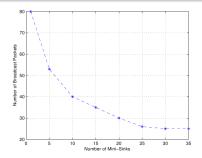
Multi-MS mode : number of sensors connected to MSs



- The connectivity capability increases as the number of *MS*s increases.
- The fully-connected network can be achieved using more than 25 *MS*s.

Analysis Results

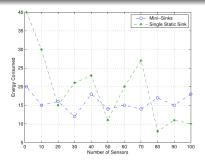
Multiple paths *MS* mode : number of packets broadcast by a sensor



 When using a single static sink, the maximum number of packets broadcast per sensor is around 90, and the minimum is around 40.

Analysis Results

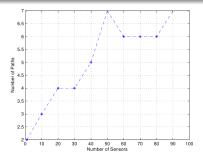
Multiple paths *MS* mode : number of packets broadcast for different number of *MS*s



- The maximum number of packets broadcast per sensor decreases from 90 to 80. While the minimum number of packets decreases from 40 to 25.
- With 30 or more MSs, the number packets is around 25.

Analysis Results

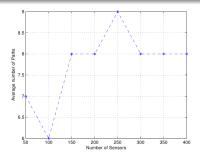
Multiple paths *MS* mode : evolution of energy consumption



- In the case of single static sink, the energy expended varies between approximately 8 and 40 Joules.
- When using *MS*s, the energy consumed by each sensor varies between approximately 12 and 20 Joules.

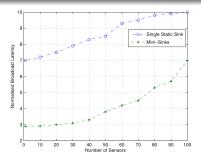
Analysis Results

Multiple paths *MS* mode : number of paths used per sensor



- The number of paths used per sensor for forwarding the data varies between [2 – 7].
- Successive transmissions of data can be achieved efficiently with an average of 6 paths.

Analysis Results


Multiple paths *MS* mode : average number of paths in dense *WSN*s

When the density of the network varies between [50 – 400] sensors, the number of paths used per sensor for forwarding the data varies between [6 – 9], with an average of 8 paths.

Analysis Results

Point-to-Point mode : broadcast latency during data forwarding

- In the case of a single static sink, broadcast latency varies between approximately 7 and 10, while with MSs, broadcast latency varies between approximately 3 and 7.
- MSs reduce the max latency by 30%, and the min by 57%.

Summary Perspective

Summary

A model based on Mini-Sinks

- Sensors and the main sink are fixed, but *MS*s are mobile.
- *MS*s move among the sensors according to an arbitrary mobility model in order to :
- Maintain a fully-connected network topology, collecting data within their coverage areas and forward towards the sink.
- *ECRP* is implemented in *MS*s and sensors in order to optimize the transmission cost of forwarding.
- A set of multiple paths between MSs and sensors is generated to distribute the global traffic over the entire network topology.
- Thus, the amount of data carried through the network, energy consumption and broadcast latency are reduced

19/21

イロト イポト イヨト イヨト

Summary Perspective

Perspective

• Evaluate our model in a real tesbed scenario.

э

ヘロト ヘワト ヘビト ヘビト

Summary Perspective

Thank You ! Questions ?

æ

ヘロン 人間 とくほど くほとう