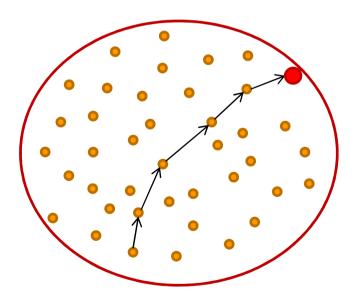

ODMAC: An On-Demand MAC Protocol for Energy Harvesting – Wireless Sensor Networks

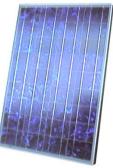
Xenofon Fafoutis and Nicola Dragoni

{xefa,ndra}@imm.dtu.dk


DTU Informatics

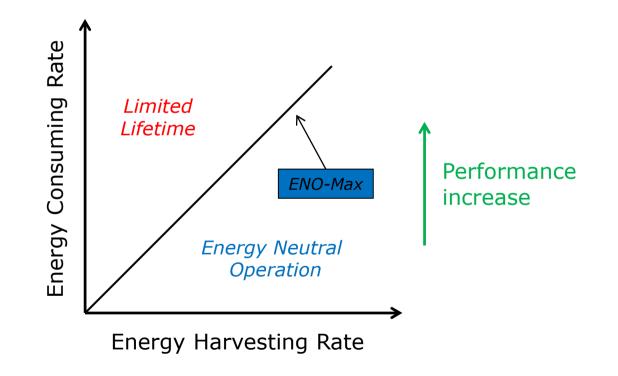
Department of Informatics and Mathematical Modeling

Outline


- Motivation
- ODMAC: An On-Demand MAC protocol for Energy Harvesting WSNs
- Evaluation through Simulations
- Conclusive remarks

Energy Harvesting

- Battery-powered WSNs
 - Eventually will die and need battery replacement
 - Often not even possible (e.g. underground sensors)
 - Sacrifice performance for lower energy consumption
- Energy-Harvesting WSNs
 - Extracting energy from the environment
 - Solar, mechanical, thermal, etc.
 - Energy sources have spatiotemporal variations
 - Batteries / Super-capacitors operate as energy buffers



3 DTU Informatics, Technical University of Denmark

Energy Neutral Operation

- Energy Neutral Operation (ENO) provides continuous lifetime
- ENO-Max also maximizes the performance
 - Performance is strongly correlated with energy consumption

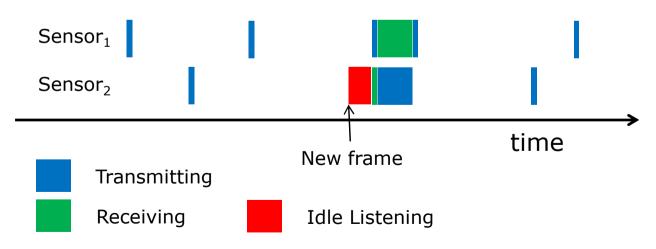
Designing EH-WSNs

Design Objective

• Operate at the maximum sustainable performance (ENO-Max)

Requirements for EH-WSNs

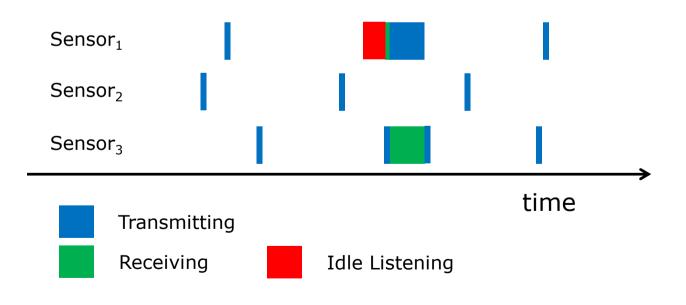
- Adaptability: Sensors should be able to adapt their energy consumption according to the energy harvesting rate
- *Performance*: Sensors should use their energy efficiently
- *Flexibility*: Capable sensor should be able to help the others


Requirements for MAC protocols

- Support for *individual duty cycles*
 - Sleeping / Activity periods cannot be synchronized!
- Efficient use of energy (e.g. mitigate idle listening)

Proposed approach: ODMAC

On Demand MAC (ODMAC)


- Sensors periodically broadcast beacons
 - According to their *individual duty cycle*
 - Stating their availability to receive frames
- Sensors with data to transmit are waiting for an appropriate beacon
 - Some energy wasted in idle listening (challenge)
- Sensors send a new beacon after a transmission to avoid congestion
- Typical back-off mechanism to avoid collisions

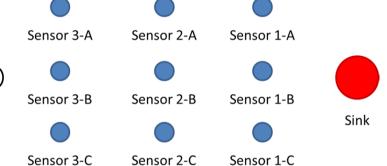
ODMAC: Opportunistic Forwarding

Opportunistic Forwarding

- Forward the frame to the sensor that wakes up first
- Decreases the *sleeping delay* => Increases performance
- Decreases the energy wasted in idle listening
- For now, all the sensors closer to the sink are potential forwarders
 - Future Work: Routing algorithm extensions to account for other metrics

7 DTU Informatics, Technical University of Denmark

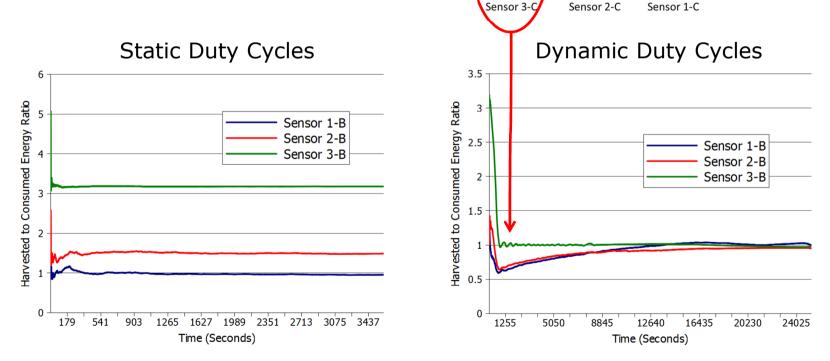
Duty Cycle Adaptation


- **Goal**: Adjust performance to the available environmental energy
- Two application-specific performance metrics
 - End-to-end delay (beaconing rate)
 - Amount of measurements (sensing rate)
- Dynamic Duty Cycle Adaptation
 - SProb: Probability that if there is a need for adjustment to the duty cycle, this will favor the sensing duty cycle
 - Simple algorithm (out of the scope)
 - Select an optimum battery level and periodically make adjustments to the duty cycle

Evaluation using Simulations

OPNET Simulator

- Energy Model
 - Accounts for the energy consumption when transmitting, receiving and listening
 - Periodic energy harvesting
- Topology
 - 9 sensors (3 groups of 3 sensors)
 - Each sensor can talk with the sensors of its *own group* and the *neighboring groups*



- Evaluation Metrics
 - Harvested to consumed energy ratio (sustainability)
 - End-to-end delay, average sensing rate (performance)
- Parameters
 - Ptx = 10dBm, Rate = 1Mbps, CW = 8
 - Dynamic Duty Cycle Adaptation is OFF (unless otherwise noted)
 - Energy Harvesting Rate is 400µW (unless otherwise noted)

Achieving ENO-Max State

Details

- Beacon Period is 0.2 sec
- Sensing Period is 0.6 sec
- Sprob is 0.5

Sensor 3-A

Sensor 3-B

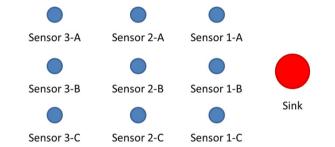
Sensor 2-A

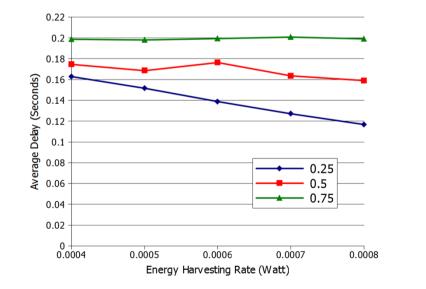
Sensor 2-B

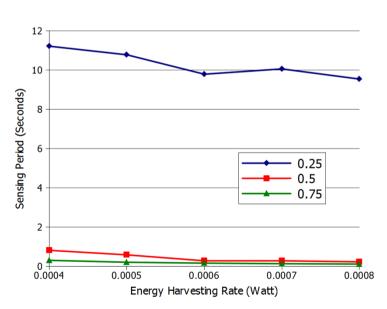
Sensor 1-A

Sensor 1-B

Sink

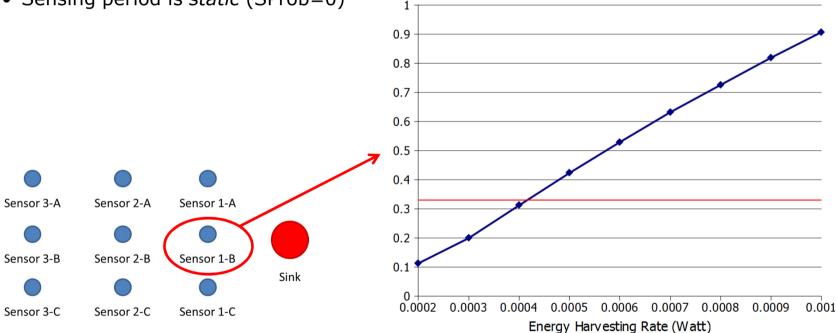

10 **DTU Informatics, Technical University of Denmark**


5/11/2011


Energy Availability vs. Performance

Details

- Sensor 1-B has activated the Dynamic Duty Cycle Adaptation mechanism
- Beacon Period is 0.2 sec
- Sensing Period is 0.6 sec
- Different values for SProb


5/11/2011

Load Balancing

Details

- All nodes have fixed duty cycles
- Apart from Sensor 1-B
- Sensing period is *static* (SProb=0)

Ongoing Work

- Apply boundaries to the sensing and beacon periods
 - Defined by the application
 - Incorporate a way to "slow down" the too capable nodes
- Introduce acknowledgements/retransmissions and
 - Evaluate them under channel errors
- Exploit beacons to propagate control messages (e.g. acks)
 - Energy-free flooding
- Study ODMAC using an analytical model
 - Arbitrary topologies
 - Effect of power adaptation
 - Incorporate routing decisions

Concluding Remarks

- The environmental energy sources have a dynamic nature
- EH-WSNs need to be able to adapt to the available energy
 - Use the surplus of harvested energy to increase performance
 - Decrease performance to maintain a sustainable operation
- MAC protocols need to *efficiently* support *individual duty cycles*
- ODMAC
 - Receivers decide on the period they offer forwarding services
 - Opportunistic forwarding reduces the energy wasted on idle listening
 - Distributed autonomous load balancing
 - Supports different application-based performance metrics

The End

Questions?