H. Aguilar

CONTROL DE TRANSMISIÓN DE DATOS. 31 de Mayo de 2007

Notas Importantes:

- 1. Los resultados no justificados, no serán tenidos en cuenta.
- 2. Los problemas se entregan por separado, ponga su nombre y apellidos en cada hoja, enumerándolas.
- 3. Un error conceptual grave, puede anular todo el problema.

Problema 1 (33%)

Sea un sistema de clave pública RSA. Considere dos usuarios A y B y una entidad certificadora CA que expende Certificados Firmados (Certificado Claro || Firma Digital). Los usuarios del sistema utilizan criptografía asimétrica RSA para autenticarse y para intercambiar una clave de sesión. Las secuencias binarias se consideran con más peso a la izquierda (MPI). El sistema trabaja en bloques de 4 bits.

Parámetros RSA de los usuarios:

Usuario A: 0001	$p_A=13, q_A=7, e_A=7, d_A=31$
Usuario B: 0010	$p_B=5, q_B=11, e_B=3, d_B$
CA	$P_{CA}=3, q_{CA}=11, e_{CA}=13, d_{CA}=17$

La función resumen o $Hash\ H(M)$ de un mensaje M, se obtiene aplicando la operación OR-exclusiva (\oplus) , bit a bit, sobre los sucesivos bloques del mensaje M de entrada. El funcionamiento es el siguiente:

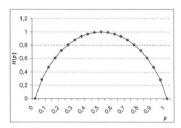
- Las secuencias binarias se consideran con más peso a la izquierda (MPI).
- Se añaden a la izquierda del mensaje tantos ceros como sea necesario para que la longitud sea múltiplo de 4.
- Se divide el mensaje resultante desde la izquierda en m bloques b_j , de n=4 bits cada uno, siendo $1 \le j \le m$.
- b_{ij} es el bit *i*-ésimo del bloque *j*-ésimo; $1 \le i \le n$
- H(M)=C. La función Hash de M es un bloque resultante $C=C_1C_2C_3...C_n$ de n=4 bits, donde:
- El bit i-ésimo del bloque C es: C_i=b_{il}⊕b_{i2}⊕b_{i3}⊕....⊕b_{im}.
- a) Obtenga el certificado digital que CA envía a A. Expréselo en hexadecimal. Explique qué hacen ambos usuarios de modo que uno de ellos autentique al otro. ¿Quién autentica a quién, en este caso? (1p)
- B desea comunicar una clave de sesión a A, k_{sestón}. Indique qué condiciones han de cumplir las posibles k_{sestón} que B envíe a A. ¿Es válida k_{sestón} = 6? (1p)
- c) Suponga que la respuesta es afirmativa, obtenga el criptograma que B envía a A. (0,3p)
- d) Dicha clave de sesión es el estado inicial del LFSR con polinomio de conexiones C(D)=1+D³+D⁴, que se utiliza para cifrar en flujo. Obtenga el criptograma que genera B para enviar codificado a A el mensaje M=43F2A2_H. Nota: El 1er bit generado por el LFSR cifra al bit menos significativo del mensaje. (1p)

Problema 2 (33%)

Sean X e Y dos variables aleatorias discretas con la siguiente función de distribución (probabilidades conjuntas):

Y,X	X ₁	X ₂	X ₃	X ₄
У1	1/18	1/18	1/9	1/9
У2	1/9	1/9	1/9	1/9
У3	0	1/9	0	1/9

- a) Calcule la entropía conjunta, H(X, Y). (0,6p)
- b) Calcule la entropía de X, H(X). (1p)
- c) Calcule la entropía condicionada, H(Y\X). (1p)
- d) Calcule la información mutua, I(X; Y). (0,7p)


Problema 3 (34%)

Sea un canal discreto caracterizado por esta matriz de probabilidades de transición:

$$p(D \setminus F) = \begin{pmatrix} 1/2 & 1/4 & 1/4 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$$

- a) Calcule la capacidad de canal discreto. (1p)
 b) ¿Cómo es la fuente F que aproveche al máximo la capacidad de dicho canal? (1p)
 c) Calcule la eficiencia del código Huffman para la fuente del apartado anterior. (0,4p)
- d) Comente el resultado obtenido. (1p)

Nota:

$$H(p) = p \cdot \log_2 \frac{1}{p} + (1-p) \cdot \log_2 \frac{1}{(1-p)}$$

р	H(p)
0	0,00000
0,001995	0,02077
0,00399	0,03754
0,005985	0,05280
0,00798	0,06708
0,009975	0,08063
0,01197	0,09359
0,013965	0,10606
0,01596	0,11811
0,017955	0,12980
0,01995	0,14116
0,021945	0,15223
0,02394	0,16302
0,025935	0,17358
0,02793	0,18390
0,029925	0,19402
0,03192	0,20393
0,033915	0,21366
0,07	0,36592
0,08	0,40218
0,09	0,43647
0,1	0,46900
0,11	0,49992
0,12	0,52936
0,13	0,55744
0,14	0,58424
0,15	0,60984
0,16	0,63431
0,17	0,65770

0,18	0,68008
0,19	0,70147
0,2	0,72193
0,21	0,74148
0,22	0,76017
0,23	0,77801
0,24	0,79504
0,25	0,81128
0,26	0,82675
0,27	0,84146
0,28	0,85545
0,29	0,86872
0,3	0,88129
0,31	0,89317
0,32	0,90438
0,33	0,91493
0,34	0,92482
0,35	0,93407
0,36	0,94268
0,37	0,95067
0,38	0,95804
0,39	0,96480
0,4	0,97095
0,41	0,97650
0,42	0,98145
0,43	0,98582
0,44	0,98959
0,45	0,99277
0,46	0,99538
0,47	0,99740

0,48	0,99885
0,49	0,99971
0,5	1,00000
0,51	0,99971
0,52	0,99885
0,53	0,99740
0,54	0,99538
0,55	0,99277
0,56	0,98959
0,57	0,98582
0,58	0,98145
0,59	0,97650
0,6	0,97095
0,61	0,96480
0,62	0,95804
0,63	0,95067
0,64	0,94268
0,65	0,93407
0,66	0,92482
0,67	0,91493
0,68	0,90438
0,69	0,89317
0,7	0,88129
0,71	0,86872
0,72	0,85545
0,73	0,84146
0,74	0,82675
0,75	0,81128
0,76	0,79504
0,77	0,77801

	1
0,78	0,76017
0,79	0,74148
0,8	0,72193
0,81	0,70147
0,82	0,68008
0,83	0,65770
0,84	0,63431
0,85	0,60984
0,86	0,58424
0,87	0,55744
0,88	0,52936
0,89	0,49992
0,9	0,46900
0,91	0,43647
0,92	0,40218
0,93	0,36592
0,94	0,32744
0,95	0,28640
0,96	0,24229
0,97	0,19439
0,98	0,14144
1	0,00000

31 Mayo 07. Control M. Agrilar. Transmission de Datos

(2) a)
$$H(x,y) = \underbrace{\xi}_{i} \underbrace{\xi}_{i} p(x_{i},y_{i}) \cdot \log_{2} \frac{1}{p(x_{i},y_{i})} = \underbrace{\frac{1}{18} \log_{2} \frac{1}{1/48} + 8 \cdot \frac{1}{9} \cdot \log_{2} \frac{1}{1/9}}_{5 \text{ mbolo}} = \underbrace{\frac{3'}{2840 + \frac{1}{18}} \underbrace{\frac{1}{18} \log_{2} \frac{1}{1/48}}_{5 \text{ mbolo}}$$

b)
$$H(x) = \underbrace{\Xi}_{5} p(x_{1}) \cdot \log_{2} \frac{1}{p(x_{1})} = \frac{1}{6} \log_{2} 6 + \frac{5}{18} \log_{2} \frac{18}{5} + \frac{2}{9} \log_{2} \frac{9}{2} + \frac{1}{3} \log_{2} 3$$

$$P(x_{1}) = \underbrace{\Xi}_{5} p(x_{2}, y_{5}) = \frac{1}{18} + \frac{1}{9} = \frac{1}{6}$$

$$P(x_{2}) = \underbrace{\Xi}_{5} p(x_{2}, y_{5}) = \frac{1}{18} + 2 \cdot \frac{1}{9} = \frac{5}{18}$$

$$P(x_{3}) = \underbrace{\Xi}_{5} p(x_{3}, y_{5}) = \underbrace{2}_{7} \cdot \frac{1}{9} = \frac{2}{9}$$

$$P(x_{4}) = \underbrace{\Xi}_{5} p(x_{4}, y_{5}) = \underbrace{3}_{7} \cdot \frac{1}{9} = \frac{1}{3}$$

$$P(y_i|X_i) = \frac{P(y_i \cdot x_i)}{P(x_i)} \frac{Y(X \mid X_1 \mid X_2 \mid X_3 \mid X_4)}{Y_1 \mid 1/3 \mid 1/5 \mid 1/2 \mid 1/3} \frac{Y(X \mid X_1 \mid X_2 \mid X_3 \mid X_4)}{Y_2 \mid 2/3 \mid 2/5 \mid 1/2 \mid 1/3} \frac{Y(X \mid X_1 \mid X_2 \mid X_3 \mid X_4)}{Y_3 \mid 0 \mid 2/5 \mid 0 \mid 1/3}$$

$$|H(Y \times X) = \frac{1}{18} \log_2 3 + \frac{1}{9} \log_2 \frac{3}{2} + \frac{1}{18} \log_2 5 + \frac{1}{9} \log_3 \frac{5}{2} + \frac{1}{9} \log_2 \frac{5}{2$$

d)
$$I(x;y) = H(x) - H(x,y) = H(y) - H(y,x)$$

 $H(y) = \begin{cases} P(x_i) \cdot \log_2 \frac{1}{P(x_i)} \end{cases}$

$$\begin{split} & p(\frac{1}{3}\frac{1}{4}) = \frac{1}{2} p(x_{1}^{2}, \frac{1}{3}\frac{1}{4}) = 2 \cdot \frac{1}{48} + \frac{2}{3} \cdot \frac{1}{q} = \frac{1}{3} \\ & p(\frac{1}{3}\frac{1}{4}) = \frac{1}{2} p(x_{1}^{2}, \frac{1}{3}\frac{1}{4}) = \frac{1}{4} - \frac{1}{4} \\ & p(\frac{1}{3}\frac{1}{4}) = \frac{1}{2} p(x_{1}^{2}, \frac{1}{3}\frac{1}{4}) = \frac{2}{q} \\ & p(\frac{1}{3}\frac{1}{4}) = \frac{1}{2} p(x_{1}^{2}, \frac{1}{3}\frac{1}{4}) = \frac{2}{q} \\ & p(\frac{1}{3}\frac{1}{4}) = \frac{1}{2} p(\frac{1}{3}\frac{1}{4}) = \frac{2}{q} \\ & p(\frac{1}{3}\frac{1}{4}) = \frac{1}{2} p(\frac{1}{3}\frac{1}{4}) = \frac{2}{q} p(\frac{1}{3}\frac{1}{4}) = \frac{1}{2} p(\frac{1}{3}\frac{1}{4}) + p(\frac{1}{3}\frac{1}{4}) = \frac{1}{2} \\ & p(\frac{1}{3}\frac{1}{4}) = \frac{1}{2} p(\frac{1}{3}\frac{1}{4}) + p(\frac{1}{3}\frac{1}{4}) +$$

$$C'(x) = o'467 \cdot log_2 \frac{1}{\frac{1}{3} + o'167 \times} + \left(\frac{1}{3} + o'167 \times}\right)^2 \cdot \frac{1}{\ln 2} \cdot \frac{-1.0467}{\left(\frac{1}{3} + o'167 \times}\right)^2}{\left(\frac{1}{3} + o'167 \times}\right)^2} = \frac{2 \cdot \left(-o'083 \cdot log_2 \cdot \frac{1}{\frac{1}{4} - o'083 \times}\right)^3 \cdot \frac{1}{\ln 2} \cdot \frac{+1 \cdot o'083}{\left(\frac{1}{3} - o'083 \times}\right)^3} \cdot 2 \cdot + o'08949}{c_{1}(x)} = 0 \quad o'467 \cdot log_2 \cdot \frac{1}{\frac{1}{3} + o'167 \times} - \frac{o'147}{\ln 2} - o'083 \cdot log_2 \cdot \frac{1}{\frac{1}{3} - o'083 \times}} \cdot 2 \cdot + \frac{o'083}{267^2} \cdot 2 \cdot + o'08949} = 0 \quad o'167 \cdot log_2 \cdot \frac{1}{\frac{1}{3} + o'167 \times} - log_3 \cdot \frac{1}{\frac{1}{3} - o'083 \times}}{\frac{1}{3} + o'167 \times} - log_3 \cdot \frac{1}{\frac{1}{3} - o'083 \times}} = -o'0849}{o'167} = -o'50849} = 0 \quad o'367 \cdot \frac{1}{3} - o'083 \times} = -o'0849}{o'167} = -o'50849} = -o'50849$$

$$co'369 \cdot \frac{1}{\frac{1}{3} + o'167 \times}}{\frac{1}{3} + o'167 \times} - log_3 \cdot \frac{1}{\frac{1}{3} - o'083 \times}}{\frac{1}{3} + o'167 \times}} = -o'50849} = 0'7030 = \frac{1 - o'2879 \times}{1 + o'504 \times}, \quad o'7030 + o'3522 \times = 1 - o'249 \times}{1 + o'504 \times}$$

$$c'3797 \times = o'2977, \quad \chi_{MAX} = o'4958 = p(A1)$$

$$Cl = Cl(x_{MAX}) = o'4161 \cdot log_3 \cdot \frac{1}{o'4461} + o'2922 \cdot log_3 \cdot \frac{1}{o'2727} \cdot 2 - 1'5428$$

$$= o'02086 \cdot \frac{lof_3}{lof_3}$$
Simbolo

c)
$$E = \frac{H}{L}$$
 El códiso Hoffman es $\frac{F}{A_1}$ O Az 1

I= 1 bit/ormbolo

d) Es muy baje, debido a la prete dispersión de probabilidads. Se podería aumentar E extendendo la piente, H(FM)=m. H(F)

$$FD(M) = H(M)^{d_{CA}} \mod N_{CA} = 8^{17} \mod 33 = 2 = 0010$$

$$d_{CA} = 17$$

$$N_{CA} = R_{CA} \cdot g_{CA} = 3 \cdot 11 = 33$$

$$C(\delta) = A + b^{3} + b^{4} + es \quad primi + ro. \Rightarrow L = 2^{m} - A = 2^{4} - A = 4.5$$

$$P^{(0)}(\delta) = P^{(15)}(\delta) = P^{(30)}(\delta) - \dots$$

$$\frac{m}{10} \quad 0 \quad 1 \quad A \quad 0 \quad 0 \quad A \quad 1 \quad 0 \quad b \quad b^{(m-1)}(\delta) \quad mod \quad c(\delta)$$

$$\frac{1}{10} \quad 0 \quad 1 \quad A \quad 0 \quad 0 \quad b^{3} \quad b^{4} + b^{3} \quad b^{4} + b^{3} + A \quad b^{4} + b^{3} + A$$

$$\frac{1}{10} \quad 0 \quad 1 \quad A \quad 0 \quad 0 \quad b^{3} \quad b^{4} + b^{3} \quad b^{4} + b^{3} + A \quad b^{4} + b^{3}$$