Transmissió de dades, grupo 20

Fecha: 2 Diciembre 2009

Notas provisionales: 9 Dic Período de alegaciones: 11 Dic Fecha notas revisadas: 14 Dic

UNIVERSITAT POLITÈCNICA DE CATALUNYA DEPARTAMENT D'ENGINYERIA TELEMÀTICA

Información adicional:

Duración de la prueba: 2 HORAS

Cualquier error conceptual grave puede anular todo el problema

PROBLEMA 1 (30%)

Un sistema de transmisión de datos está compuesto por un regenerador de señal. El regenerador tiene por entradas (X) símbolos que pertenecen al alfabeto $\{\ 1,\ 0,\ -1\ \}$. Las probabilidades de recepción de los símbolos son: $P[X=1]=\alpha$, $P[X=0]=1-\alpha-\beta$, $P[X=-1]=\beta$ para $0<\alpha+\beta<=1$

El regenerador restituye los valores de los borrones (X=0) en valores de salida Y=1 o Y=-1 con la misma proporción con la que se generan y mantiene el mismo valor (Y=X) cuando las entradas son X=1 o X=-1.

- a) Determine H(Y)
- b) Calcule H(Y/X)
- c) Halle I(X; Y)
- d) Calcule la capacidad del sistema regenerador en bits por símbolo para los casos:

PROBLEMA 2 (30%)

Se dispone de un código de canal lineal, binario y sistemático (8,4), con una matriz de generación

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

a) Indíquese si las siguientes matrices H₁ y H₂ pueden ser de comprobación

$$H_1 = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} \qquad H_2 = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- b) Cuál es la capacidad correctora del código?
- c) Supóngase que se ha recibido (1 0 1 1 1 a 0 b). ¿Cuál sería la salida del decodificador?

PROBLEMA 3 (20%)

Un atacante a un sistema criptográfico sabe que el algoritmo de cifrado utilizado es en flujo, síncrono y basado únicamente en un único LFSR con polinomio primitivo de 10 celdas. Dicho atacante puede acceder a un subconjunto de la secuencia generada por dicho LFSR. ¿Cuántos bits de dicho subconjunto necesita para poder conocer toda la secuencia? Razone la respuesta.

PROBLEMA 4 (20%)

Un usuario decide emplear la firma RSA sin usar hash (m^d mod n). Supóngase que un atacante conoce dos firmas legítimas para dos mensajes m_1 y m_2 . ¿Podría conocer la firma de m_1+m_2 ?