
A Reinforcement Learning Based Approach for 5G
Network Slicing Across Multiple Domains

Godfrey Kibalya∗, Joan Serrat∗, Juan-Luis Gorricho∗, Rafael Pasquini†, Haipeng Yao‡, and Peiying Zhang§
∗Dept.Network Engineering, Universitat Politecnica de Catalunya,Barcelona, Spain

†Computing Faculty, Federal University of Uberlandia, Uberlandia, Brazil
‡State key Lab. of Networking and Switching Technology, Beinjing University of Posts and Telecommunications, Beijing, China

§College of Computer and Communication Engineering,China University of Petroleum (East China), Qingdao, China
E-mails: {Godfrey.mirondo.Kibalya@upc.edu, serrat@tsc.upc.edu, juanluis@entel.upc.edu, rafael.pasquini@ufu.br,

yaohaipeng@bupt.edu.cn, 25640521@qq.com}

Abstract—Network Function Virtualization (NFV) and Ma-
chine Learning (ML) are envisioned as possible techniques for
the realization of a flexible and adaptive 5G network. ML will
provide the network with experiential intelligence to forecast,
adapt and recover from temporal network fluctuations. On the
other hand, NFV will enable the deployment of slice instances
meeting specific service requirements. Moreover, a single slice
instance may require to be deployed across multiple substrate
networks; however, existing works on multi-substrate Virtual
Network Embedding fall short on addressing the realistic slice
constraints such as delay, location, etc., hence they are not
suited for applications transcending multiple domains. In this
paper, we address the multi-substrate slicing problem in a
coordinated manner, and we propose a Reinforcement Learning
(RL) algorithm for partitioning the slice request to the different
candidate substrate networks. Moreover, we consider realistic
slice constraints such as delay, location, etc. Simulation results
show that the RL approach results into a performance compa-
rable to the combinatorial solution, with more than 99% of time
saving for the processing of each request.

Index Terms—Multi-substrate VNE, Reinforcement learning,
Multi-domain slicing, 5G.

I. INTRODUCTION

The transition towards full network virtualization will see
services being instantiated as Network Slice Instances (NSIs),
realized in the form of logical and self-contained networks,
consisting of both shared and dedicated resources, including
Virtual Network Functions (VNFs) [1], [2]. These VNFs can
be launched, placed, and scaled flexibly to meet fluctuating
workload demands [2], [3], [4].

A major challenge for the slicing scenario is the deployment
of NSIs across multi-provider physical infrastructures. In this
case, the NSI is realized as a concatenation of slice parts
hosted by different administrative domains [5]. In general, the
multi-domain slicing problem can be broken into four sub-
problems: Firstly, candidate search which involves identifying
a set of Infrastructure Providers (InPs) that can serve the slice
request individually or as a combined set; Secondly, slice

This work has received funding from the European Union’s Horizon 2020
re-search and innovation programme under grant agreement No 777067
(NECOS pro-ject). This work is also funded by the national project TEC2015-
71329-C2-2-R (MINECO/FEDER).

request partitioning that involves deciding which part of the
request each candidate InP will serve in order to maximize a
given objective e.g cost while meeting the slice constraints;
Thirdly, binding and resource allocation to the slice parts
associated with each InP; Fourthly, life-cycle management
which involves dynamically adapting the allocated resources
and VNFs to the observed real time slice performance.

The multi-domain slicing problem is related to the multi-
substrate VNE problem which consists of the resource match-
ing stage, the Virtual Network Request (VNR) partitioning
stage, the embedding stage and the binding stage. This prob-
lem is studied in [6] - [9]. However, different from these
and other existing works, we propose an InP search algorithm
which exploits disclosed information such as delay along inter-
domain links to reduce the search space of candidate InPs for
the subsequent stages, hence significantly reducing the request
processing delays. Moreover, the search algorithm is able to
identify and reject any unfeasible request, hence avoiding
partitioning and embedding delays due to such requests at
later stages. Unlike existing works, we precede the partitioning
stage by an internal embedding check which eliminates the
possibility of request being rejected after partitioning stage
due to intra-domain link and node violations. Moreover, we
associates each request with realistic constraints such as delay.
Reinforcement learning is introduced in the VNE problem in
[10]. However, besides being applied on a single substrate
network, this work did not address practical VNR constraints
in terms of location and delay.

Consequently, our novel contribution is threefold:
1) In order to identify a feasible set of InPs that are capable

of serving a request, we propose a Candidate Search
Algorithm (CaSA) that jointly considers the network
topology attributes and the slice request constraints to
identify these InPs. Moreover, the proposed algorithm
is able to identify and reject all unfeasible requests.

2) A deep reinforcement learning (DRL) algorithm for
selecting an optimal set of InPs among all the feasible
candidates in order to maximize the revenue to cost ratio
for deploying the slice requests. Simulation results show
that the proposed algorithm has low time complexity.

Algorithm 1 Filtering step algorithm
Input:GU ,Gs

n

Output: Filtered Candidate set,candReqz

filter

1: procedure VIRTUAL NODE CANDIDATE ASSIGNMENT(LoopNV)
2: Initialise: candReqz

filter=∅ . Initialise lists
3: Assign index to each virtual node.
4: for Each virtual node j ∈ NV do
5: lockj,Inp = ∅ . Initialise location set
6: for Each Inp m ∈M do:
7: if loc(j) + dev(j) ∈ RadmInp then . Verify location
8: Add m to lockj,Inp
9: end if

10: end for
11: end for
12: for Each virtual node j ∈ NV with Index K > 0 do
13: for Each Inp y ∈M in lock−1

i,Inp do . Inp for preceding vn
14: for Each Inp m ∈M in lockj,Inp do . Inp for current vn
15: path= findpath(y,m) . Find path between y andm
16: -Verify if path delay,bandwidth and hops meet constraints
17: on virtual link i− j . check virtual link constraints
18: end for
19: -Remove any infeasible InP m from lockj,Inp
20: end for
21: -Remove any infeasible InP y from lock−1

i,Inp

22: Append lock−1
i,Inp to candReqz

filter
23: end for
24: Return candReqz

filter

25: end procedure

3) Unlike other works, we treat the entire multi-substrate
slicing problem as a single coordinated problem where
the results of one stage are the inputs to the next stage.

The rest of the paper is organized as follows: Section II
presents the proposed CaSA and the combinatorial algorithms.
Section III presents the DRL algorithm. The performance
evaluation is presented in Section IV. Section V presents the
conclusion and future work.

II. PROPOSED HEURISTICS

A. Candidate Search Algorithm

The Candidate Search (CaSA) algorithm aims at identifying
all InPs that satisfy the end-to-end constraints of the slice
request either individually or as a combined set. The algorithm
is executed in two steps, first a filtering step and then the intra-
domain VNE enumeration step as discussed below.

1) Filtering Step: This step matches the virtual nodes’
location constraints to each InP’s coverage, and the virtual
links constraints to the inter-domain links’ attributes. This
is done since a virtual node can only be served by an InP
whose coverage satisfies the virtual node location requirement.
Similarly, for two successive virtual nodes j and k to be
served by InP a and InP b, where a¬b, there must exist an
inter-domain path between InP a and InP b, that satisfies the
constraints on virtual link j−k. Any InP not satisfying any of
the above conditions is eliminated. This reduces candidate InPs
for the subsequent step of intra-domain VNE enumeration.

The pseudocode for the filtering algorithm is shown in
Algorithm 1 with the notations indicated in table 1. The
request virtual nodes are assigned indices from zero to N −1,

TABLE I
NOTATIONS AND VARIABLES

Notation Description
Gs

n undirected graph for substrate network of InP m
GU Inter-domain connectivity graph
RadmInp coverage area of InP m
NS set of all substrate nodes for of InP m
LS set of all substrate links for of InP m
NV set of all virtual nodes of a request
LV set of all virtual links of a request
loc(j) preferred location of virtual node j
dev(j) Maximum deviation from preferred location of j
vn ID virtual node Index
lockj,Inp set of all InPs for whose RadmInp includes desired

location of vn j
candReqz

filter Set of candidate InPs for request k after filtering stage

where N is the total number of virtual nodes. Next, for each
virtual node j with index k, we generate a location set lockj,Inp
, consisting of all InPs whose coverage radius includes the
desired location of j (line 3-7). Next, we match the virtual
link constraints as follows: For each virtual node j with index
k > 0 (i.e starting with second node whose k=1), compute the
path (shortest path in this work) between each of the InPs in
the set lock−1

i,Inp of the immediate preceding node i to each of
the InPs in the set lockj,Inp of current node j with index k (line
11-14). For each path, we verify if the path delay, bandwidth
and number of external hops satisfy the constraints for virtual
link i − j (line 15). In case there is any InP m in lock−1

i,Inp

or lockj,Inp that does not result into any feasible path with all
InP combinations in lock−1

i,Inp and lockj,Inp, then the InP m is
removed from the candidate set for the corresponding virtual
node (line 18-20). This procedure is repeated until all virtual
nodes are enumerated with the current virtual node becoming
the preceding virtual node in the subsequent round. If any
location set is empty, the entire request is rejected.

2) Intra-domain VNE enumeration step: The filtering step
associates each virtual node with a set of possible InPs by
virtue of link constraints and node location bounds. The VNE
enumeration step then verifies if within each of those InPs,
there is a feasible substrate node for this virtual node. In case
there is no such a node, then this InP is removed from the
location set of this virtual node. Moreover, at the filtering
step, in case any two successive virtual nodes in the request
are associated to the same InP, then there must be a feasible
substrate path between the substrate nodes of these virtual
nodes within this InP. Upon executing the VNE enumeration,
the remaining candidate InPs within the location set of each
virtual node constitute the output of the search stage which is
the input into the partitioning stage. In case any virtual node
can not find a substrate node across all InPs, the entire request
is rejected. Observe that the intra-domain VNE enumeration
is executed for one InP at a time. Consequently, any of the
existing single substrate VNE algorithms such as [11] and [12],
can be used for this purpose.

B. Combinatorial VNR partitioning algorithm

From the CaSA algorithm, a single virtual node can be asso-
ciated with multiple InPs. The partitioning algorithm therefore
decides the final InP to serve each virtual node with the aim of
optimizing a given objective function while respecting the end-
to-end slice constraints [6], [8]. The combinatorial algorithm,
whose performance we compare with the DRL algorithm,
exploits the results from the CaSA algorithm to generate
all possible partitioning alternatives. From these, the feasible
solutions meeting the slice constraints are sorted according to
the objective to be optimized, and the partitioning with the best
value is adopted. As can be expected, such a technique results
into the optimal decision at each stage, since it explores all
possibilities. At the binding stage, the virtual nodes and links
are assigned to the substrate nodes and links selected by the
partitioning algorithm .

III. REINFORCEMENT LEARNING ALGORITHM

In this section, we discuss the proposed DRL algorithm with
focus on the feature extraction, neural network architecture
and training. We used the reinforcement learning module to
perform the slice partitioning task of the problem.

A. Feature extraction

The features extracted for the policy network reflect the
attributes of both the slice request and substrate network. The
extracted features are highlighted below:

1) Mapping probability which denotes a fraction of the total
request nodes and links that were associated to a given
InP during the candidate search stage.

2) Average link bandwidth of the InP’s inter-domain links
to all candidate InPs of the preceding virtual node.

3) Average link delay of current InP’s inter-domain links
to the candidate InPs of the preceding virtual node.

4) Average number of hops per link of current InP’s inter-
domain links to the candidate InPs of the preceding
virtual node.

5) Success probability which captures the number of virtual
nodes of the request allocated to this InP until now. The
greater the number of vns associated with a single InP,
the less number of inter-domain connections, hence the
less embedding costs.

B. Neural Network architecture

The policy neural network takes as input an M ×N feature
matrix, where M is the number of InPs and N is the number
of extracted features per InP. This network consists of 4
major layers, that is: input layer, convolutional layer, softmax
layer and filtering layer. The convolutional layer performs a
convolution between the feature matrix from the input layer
and the learnable weight values of the filter to produce an
M − dimensional vector vector of values , where M is the
number of InPs. These are converted into an M−dimensional
vector of probabilities by the softmax layer. The filtering layer
filters out all InPs that are not capable of meeting the request
constraints. Once such InPs are filtered out, the final InP for

a given virtual node is chosen as the one with the highest
probability.

C. Training phase

To train the neural network, we used offline demand sets of
size 500 requests per epoch with the request delay uniformly
distributed between 1 to 200 units. For each training request,
we generate the feasible InPs using the CaSA algorithm. Then,
for each virtual node for which we want to identify the final
InP, we generate its corresponding feature matrix which is fed
as an input to the policy network which associates a probability
to each InP for embedding this virtual node. However, since
the neural network parameters are initially randomly assigned,
we perform a trade off between exploration and exploitation
during training. For each virtual node, the gradients of the pol-
icy neural network are computed using back propagation and
resulting gradients stacked. If the entire request is embedded
successfully, we compute the resulting revenue to cost ratio as
the reward signal, otherwise the stacked gradients are deleted.
The final gradient of the entire request is then computed as:

g := α.r.gs (1)

where α is the learning rate, r is the reward and gs are the
stacked gradients. The resulting gradients from the different
requests are stacked into buffer until the number of successful
requests is equal to batch size. Then all the stacked gradients
are jointly applied to the model and the stack buffer is emptied.
The performance of the neural network during the training
phase is shown in Figure 3 for training duration of 100 epochs.

IV. PERFORMANCE EVALUATION

We compare the performance of the combinatorial and RL
schemes that respectively use the combinatorial algorithm and
the trained neural network for partitioning the slice request.
Both schemes use the same algorithms for candidate search
and embedding.

A. Results and discussion

We consider an online scenario where the request arrival
follows a Poison distribution with an arrival rate (λ) of 5
requests per 100 unit times, for a total of 70,000 units of
time. The performance is analyzed along the different unit
times as shown in Figure 4. The values of the different
parameters used in simulation are shown in Table II. For
both schemes, we assume that whenever a given request is
not served, that request leaves the system. From Figure 4(a),
the combinatorial scheme initially has a higher Acceptance
Ratio (AR) compared to the RL scheme. However, as more
requests arrive, the latter gives a better performance. This is so
because at each partitioning instant, the combinatorial scheme
selects the partitioning with the smallest number of links to
minimize embedding costs. This minimizes the link resource
usage hence inducing a higher AR but my create bottlenecks
on shorter paths,hence low AR in the long run. The RL scheme
is able to balance the number of used links and the available

0

10

20

30

40

50

60

0 20 40 60 80 100

A
c
c
e
p

ta
n

c
e
 R

a
ti

o
 i

n
 %

Training epoch

(a) Training acceptance ratio

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80 100

R
e
v
.
to

.C
o
s
t

R
a
ti

o

Training epoch

(b) Training revenue to cost ratio

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 20 40 60 80 100

R
e
v

e
n

u
e

Training epoch

(c) Training revenue

Fig. 1. Training Performance

0.1

0.3

0.5

0.7

0.9

250 1250 2250 3250

N
o
r
m

a
li

se
d

 A
R

Demand Size

RL Combinatorial

(a) Acceptance ratio

0.1

0.3

0.5

250 1250 2250 3250

R
e
v
.
to

 C
o
s
t

R
a

ti
o

Demand size

RL Combinatorial

(b) Revenue to cost ratio

0

10

20

30

40

50

250 1250 2250 3250
R

e
v
e
n

u
e
 (

1
0
^

6
)

Demand size

RL Combinatorial

(c) Long term revenue

0

20

40

60

80

100

120

140

160

250 1250 2250 3250

E
x
e
c
u

ti
o
n

 t
im

e
 (

S
e
c
s
)

Demand size

RL Combinatorial

(d) Processing time

Fig. 2. Performance along unit time (λ=5)

TABLE II
SIMULATION PARAMETERS

Substrate Network:
parameter Value
No. InPs 8
Nodes per InP 20
Inter-provider bw unif distrib.[50,200]
Inter-provider delay unif distrib.[1,100]
Inter-provider link cost unif distrib.[1,10]
Intra-provider bw unif distrib.[50,200]
Intra-provider link cost unif distrib.[1,5]
Intra-provider link delay unif distrib.[1,20]
Inp Span 30 units
Inp deployment boundaries 250 X 250 square area
Inp connectivity probability 0.4
Node cpu unif distrib.[50,200]
substrate node connectivity
prob

0.5

Slice Request:
No.Virtual nodes uni.distrib.[2,10]
Node cpu uni.distrib.[1,20]
Bandwidth demand uni.distrib.[1,50]
Bandwidth delay uni.distrib.[50,200]
Max.hops uni.distrib.[1,5]
Mean arrival rate uni.distrib.[2,10]
Life-time 500 (mean)

link resources, which guarantees a long term AR. A similar
trend is observed in terms of revenue to cost ratio and long
term revenue shown in Figure 4(b) and 4(c) respectively.

From Figure 4(d), the average processing time per admitted
request for the combinatorial scheme is shown to decrease with

time. This is because as more requests arrive, the candidate
InPs for serving the request decrease due to reduced inter-
domain link resources, consequently leading to a reduction in
the enumeration space for the partitioning stage. For the RL
scheme, the processing time is relatively constant since the
input features of the policy network is constant irrespective of
the demand size.

V. CONCLUSION

This paper addressed the problem of network slicing across
multiple domains. Particularly, we have presented a search
algorithm that jointly exploits the network attributes and slice
request specifications to identify a feasible set of domains onto
which to deploy a slice request. Moreover, the algorithm is
able to identify and reject all unfeasible requests. Additionally,
we proposed an RL algorithm able to partition a slice request
in a fraction of a second irrespective of the demand size.

For future work, we consider multi-domain slicing under
limited information disclosure. Moreover, we explore the
applicability of machine learning to adaptively scale the re-
sources allocated to a slice across different domains basing on
the real time resource utilization. We believe that, the integra-
tion of self-learning techniques will lead to the realization of
networks that are adaptive to temporal network fluctuations.

REFERENCES

[1] M. Leconte, G. Paschos, P. Mertikopoulos, U. Kozat, ”A Resource Allo-
cation Framework for Network Slicing”, IEEE International Conference
on Computer Communications (INFOCOM 2018), Apr. 2018.

[2] Y. Choi and N. Park, ”Slice architecture for 5G core network,” 2017
Ninth International Conference on Ubiquitous and Future Networks
(ICUFN), Milan, 2017, pp. 571-575. doi: 10.1109/ICUFN.2017.7993854

[3] K. Samdanis, S. Wright et al. ”5G Network Slicing - Part 1: Concepts,
Principles, and Architectures,” in IEEE Communications Magazine, vol.
55, no. 5, pp. 70-71, May 2017. doi: 10.1109/MCOM.2017.7926919

[4] Nguyen, Van-Giang et al. “SDN/NFV-Based Mobile Packet Core Net-
work Architectures: A Survey.” IEEE Communications Surveys and
Tutorials 19 (2017): 1567-1602.

[5] Description of Network Slicing Concept,[Online] Available:
https : //www.ngmn.org/fileadmin/user upload/161010
NGMN Network Slicing framework v1.0.8.pdf

[6] D. Dietrich, A. Rizk, P. Papadimitriou, ”Multi-provider virtual network
embedding with limited information disclosure”, IEEE Trans. Netw.
Service Manag., vol. 12, no. 2, pp. 188-201, Jun. 2015.

[7] F. Samuel, M. Chowdhury, R. Boutaba, ”PolyViNE: Policy-based virtual
network embedding across multiple domains”, J. Internet Services Appl.,
vol. 4, no. 1, pp. 6, 2013.

[8] I. Houidi, W. Louati, W. Ben Ameur, and D. Zeghlache, “Virtual network
provisioning across multiple substrate networks,” Comput. Netw. , vol.
55, no. 4, pp. 1011–1023, 2011.

[9] F. Boutigny, S. Betge-Brezetz et. ”Multi-Provider Secure Virtual Net-
work Embedding,” 2018 9th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), Paris, 2018, pp. 1-5.doi:
10.1109/NTMS.2018.8328706

[10] H. Yao, X. Chen, M. Li, P. Zhang, and L. Wang, “A novel reinforcement
learning algorithm for virtual network embedding,” Neurocomputing,
vol. 284, pp. 1–9, Apr. 2018.

[11] ViNEYard: Virtual netwok embedding Algorithms with coordinated
node and link mapping .used for vnr model

[12]] K. Hejja, X. Hesselbach, Power aware coordinated virtual network
embedding with 5g delay constraint, J. Netw. Comput.Appl. (2018),
https://doi.org/10.1016/j.jnca.2018.10.005

