

D6.2: Complete Report on Validation
and Demonstration of the Integrated
Platform
Deliverable

Abstract

This document presents pieces of evidence from the correct NECOS execution and
summarizes the tests performed in each one of the five demonstrations using the NECOS
prototypes in different scenarios.

Document ID NECOS-D6.2
Status Final
Version 2.0
Editors(s) Billy Pinheiro (UFPA) and Antônio Abelém (UFPA)
Due 31/10/2019
Delivered 30/10/2019

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 2

Table of Contents

Executive Summary ... 9

Scope ... 10

 Introduction ... 11

 Structure of this document ... 11

 Contribution of this deliverable to the project and relationship with other deliverables 11

 NECOS Platform Validation Plan .. 13

 Prioritization of Requirements .. 14

 NECOS key Performance Indicators .. 15

 Acceptance Plan .. 17

 Integrated NECOS Platform Testing Environments .. 19

 Prototypes ... 19

 The Slice Builder .. 19

 Slice Spec Processor .. 19

 DC and WAN Slice Controllers ... 20

 WAN Slice Controller ... 20

 Slice Resource Orchestrator (SRO) .. 20

 Slice Database .. 21

 Infrastructure & Monitoring Abstraction (IMA) .. 21

 Slice Broker and Slice Agent with RabbitMQ ... 22

 Slice Broker with HUG ... 22

 Slice Agents with HUG ... 23

 The NECOS roles .. 23

 Slice Provider ... 23

 Resource Provider ... 23

 Resource Marketplace ... 23

 Infrastructure for validation .. 23

 Islands .. 24

 Private Interconnection between Europe and Brazil .. 25

 Demonstrations and NECOS Validation Results ... 27

 MUlti-Slice/Tenant/Service (MUSTS) .. 27

 Objectives .. 27

 IoT Service ... 29

 Workflow ... 33

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 3

 Results ... 33

 Marketplace (MARK) ... 37

 Objectives .. 37

 Workflow ... 38

 Results ... 39

 Experiments with Large-scale Lightweight Service Slices (ELSA) .. 42

 Objectives .. 42

 Workflow ... 43

 Results ... 45

 Machine-learning based orchestration of slices (MLO) .. 47

 Objectives .. 47

 Workflow ... 49

 Results ... 50

 Wireless Slicing Services (WISE) .. 54

1.1.1 Objectives .. 54

 Workflow ... 56

 Results ... 57

 Acceptance Verification... 59

 Conclusion .. 60

References ... 62

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 4

LIST OF FIGURES

Figure 1. Relationship between D6.2 and other project deliverables .. 11
Figure 2. Overall NECOS platform validation plan. ... 13
Figure 3. D2.2 requirements prioritization process. ... 14
Figure 4. Functional requirements used in the workflows. .. 17
Figure 5. NECOS Integrated test environment. ... 24
Figure 6. Instantiation of the MUSTS demo on the distributed experimental infrastructure. 27
Figure 7. CDN Slice Overview. ... 28
Figure 8. JSON file used for touristic CDN scenario. ... 29
Figure 9. Real-time cargo monitoring and tracking. ... 30
Figure 10. IoT Demonstration setup based on Dojot micro services. ... 30
Figure 11. IoT Slice overview. .. 31
Figure 12. Dojot data flow. .. 32
Figure 13. MUSTS demonstration workflow. .. 33
Figure 14. Average slice provisioning time (KPI 4). ... 34
Figure 15. Average service provisioning time (KPI 3). ... 34
Figure 16. CPU Isolation. ... 35
Figure 17. Average elasticity response time (KPI1). .. 35
Figure 18. Monitoring-data availability (KPI 7). .. 36
Figure 19. Average slice provisioning time (only VIMs). ... 36
Figure 20. Instantiation of MARK on the experimental infrastructure. .. 37
Figure 21. Marketplace Resource Discovery Workflow. ... 39
Figure 22. Instantiation of ELSA on the experimental infrastructure. .. 42
Figure 23. ELSA workflow. ... 44
Figure 24. Service instantiation (embedding and deployment). ... 45
Figure 25. Creation of end-to-end Slices. .. 46
Figure 26. CPU Utilization on two different bare-metal Slices. ... 46
Figure 27. Instantiation of MLO on the experimental infrastructure. .. 47
Figure 28. Intelligent IMA workflow for feature selection. ... 50
Figure 29. Intelligent SRO workflow for elasticity. .. 50
Figure 30. Estimated Response Time versus Observed Response Time as a function of the number of
end users consuming the DHT service. ... 51
Figure 31. Estimated Response Time versus Observed Response Time as a function of the number of
end users consuming the DHT service. ... 52
Figure 32. Accuracy of the machine-learning model (measured as NMAE) as a function of the frequency
interval for the collection of the full feature set and the number K of features selected. 52
Figure 33. Comparison of the volume of data transferred by the monitoring module (IMA) towards the
orchestrator (SRO) while monitoring the full feature set once a second versus the selected feature set
once a second for K=15 in the slice with the DHT Service. ... 53
Figure 34. Instantiation of WISE on the experimental infrastructure. .. 54
Figure 35. Testbed configuration of the WISE demo. ... 55
Figure 36. WISE workflow. .. 56
Figure 37. Average provisioning time to build and decommission 8 cloud-network slices in the testbed
experiments. .. 57

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 5

Figure 38. Total signalling load impact to create and decommission cloud-network slice instances
during the course of the testbed experiments. .. 58
Figure 39. WP6 as an integration Work Package. ... 60
Figure 40. NECOS validation overview. ... 60

LIST OF TABLES

Table 1. Prioritization of requirements from D2.2. ... 14
Table 2. Prioritized KPIs associated to NECOS features. ... 15
Table 3. Resource Discovery Marketplace on a Single Host. .. 40
Table 4. Resource Discovery Marketplace on the FED4Fire testbeds... 41
Table 5. Acceptance verification. .. 59

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 6

LIST OF CONTRIBUTORS

Contributor Institution
Stuart Clayman University College London (UCL)
Francesco Tusa University College London (UCL)
Alex Galis University College London (UCL)
Christian Esteve Rothenberg University of Campinas (UNICAMP)
David Fernandes Cruz Moura University of Campinas (UNICAMP)
Celso Cesila University of Campinas (UNICAMP)
Asma Swapna University of Campinas (UNICAMP)
Tariqul Islam Sajib University of Campinas (UNICAMP)
Antonio Jorge Gomes Abelém Federal University of Pará (UFPA)

Billy Anderson Pinheiro Federal University of Pará (UFPA)
Jeffson Celeiro Sousa Federal University of Pará (UFPA)
Joan Serrat Universitat Politècnica de Catalunya (UPC)
Javier Baliosian Universitat Politècnica de Catalunya (UPC)
Ilias Sakellariou University of Macedonia (UOM)
Polychronis Valsamas University of Macedonia (UOM)
Sotiris Skaperas University of Macedonia (UOM)
Antonis Tsioukas University of Macedonia (UOM)
Sarantis Kalafatidis University of Macedonia (UOM)
Tryfon Theodorou University of Macedonia (UOM)
Luis M. Contreras Telefónica Investigación y Desarrollo (TID)
Augusto Neto Federal University of Rio Grande do Norte (UFRN)
Silvio Sampaio Federal University of Rio Grande do Norte (UFRN)
Marcilio Lemos Federal University of Rio Grande do Norte (UFRN)
Rafael Augusto Scaraficci CPqD Telecom Research and Development Center
Sand Luz Correa Federal University of Goias (UFG)
Leandro Alexandre Freitas Federal University of Goias (UFG)
Paulo Ditarso Maciel Jr. Federal University of São Carlos (UFSCar)
Fábio Luciano Verdi Federal University of São Carlos (UFSCar)
André Beltrami Federal University of São Carlos (UFSCar)
Rafael Pasquini Federal University of Uberlândia (UFU)
Raquel Fialho Q. Lafetá Federal University of Uberlândia (UFU)

REVIEWERS

Reviewer Institution
Francesco Tusa University College London (UCL)
Javier Rubio Loyola Universitat Politècnica de Catalunya (UPC)
Christian Esteve Rothenberg University of Campinas (UNICAMP)
Alex Galis University College London (UCL)

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 7

Achronyms

Acronym Description

API Application Programming Interface

CBR Constant Bit Rate

CPU Central Processing Unit

CDN Content Delivery Network

CPE Consumer-Premise Equipment

DASH Dash Price Chart

DC Data Center

DNS Domain Name System

EPA Extended Platform Awareness

FR Functional Requirements

FED4FIRE Future Internet Research and Experimentation

IMA Infrastructure & Monitoring Abstraction

IoT Internet of Things

IP Internet Protocol

ISP Internet Service Provider

JSON JavaScript Object Notation

KPI Key Performance Indicator

LSDC Lightweight Software Defined Cloud

LAN Local Area Network

MQTT Message Queuing Telemetry Transport

M2M Machine-To-Machine

NECOS Novel Enablers for Cloud Slicing

NFR Non-Functional Requirements

OTT Over The Top or Content Providers

OVS Open vSwitch

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 8

PDT Partially Defined Template

PoCs Proofs of Concept

QFD Quality Function Deployment

QoS Quality of Service

RAN Radio Access Network

REST Representational State Transfer

RSPEC Resource Specifications

SDN Software Defined Networking

SLA Service Level Agreement

SP Slice Provider

SRA Slice Resource Alternatives

SRO Slice Resource Orchestrator

SWI-Prolog Constraint Logic Programming System

TCP Transmission Control Protocol

TRL Technology Readiness Level

UDP User Datagram Protocol

VDU Virtualisation Deployment Unit

VXLAN Virtual Extensible LAN

VIM Virtual Infrastructure Manager

VLSP Very Lightweight Network & Service Platform

VM Virtual Machine

VNF Virtual Network Function

VoD Video-on-Demand

VPN Virtual Private Network

WIM Wide-area network Infrastructure Manager

WISE Wireless Slicing sErvices

WLAN Wireless Local Area Network

YAML YAML Ain’t Markup Language

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 9

Executive Summary
This document is a report of the work carried out in the context of WP6, with particular focus on task
6.2 (System & Platform Validation & Demonstration). Firstly, this deliverable presents the deployment,
test and validation activities in scope of the Novel Enablers for Cloud Slicing (NECOS) platform.
Secondly, the deliverable describes how the different testbed islands were interconnected in order to
validate and demonstrate the multi-domain federation model. In order to endorse the NECOS
validation plan, WP6 activities executed within the second year of the project were focused on (1)
setting up the network to interconnect the Lightweight Software Defined Cloud (LSDC) islands; (2)
deploying the network and computing resource description and discovery of LSDC over the federated
islands; and (3) performing the use case demonstrations.

Five demonstrations are presented and evaluated: MUlti-Slice/Tenant/Service (MUSTS), Marketplace
(MARK), Experiments with Large-scale Lightweight Service Slices (ELSA), Machine-Learning based
Orchestration of slices (MLO), and Wireless Slicing Services (WISE). Altogether, this document presents
the evidence of the suitability of the NECOS proposition by means of running platforms and
experimental evaluations.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 10

Scope
This document is the final result of task T6.2: Complete report on validation and demonstration of
the Integrated Platform NECOS project's WP6.

In the context of this document, the NECOS software solution is referenced as Lightweight Slice
Defined Cloud (LSDC) and as NECOS platform interchangeably.

The term prototype is used as a physical and logical model used to evaluate and test both the slicing
concept and workflows in network clouds.

The term demonstration is used as the set of actions and operations put together with the primary
purpose of showcasing feasibility, performance and method of slicing in networked clouds.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 11

 Introduction
The main objective of this deliverable is to describe the NECOS validation process and presents
evidence of the correct implementation and execution of NECOS workflows. In D6.1, we described the
Proofs-of-Concept (PoCs) in order to explore some of the systems related to the NECOS architecture.
The results of the analysis of these PoCs were used to develop both a revised version of the
architecture and of the Application Programming Interface (API). Figure 1 provides an overview of the
relationship between D6.2 and other project deliverables.

Figure 1. Relationship between D6.2 and other project deliverables

Technology-readiness-level (TRL) [H2020 2017] provides a standardized, systematic, and shared view
of how to manage innovation. The NECOS experimental results presented in this document were
performed using technologies validated in the lab (i.e., in reduced scale prototype developed and
integrated with complementary subsystems at laboratory), defining the current NECOS technology-
readiness-level as 4. Furthermore, some characteristics are validated through numerical analysis and
measurable Key Performance Indicators (KPI), reinforcing the NECOS classification as TRL 4.

 Structure of this document
This document is structured in five sections. Section 1 is this Introduction. Section 2 presents the
NECOS platform validation plan and discusses the inputs from others deliverables. Section 3 presents
the infrastructure hosting the prototypes used in the NECOS experimental evaluation. Section 4 is
devoted to describing the demonstrations performed in the experimental environment. Finally,
Section 5 summarizes our conclusions and outlook.

 Contribution of this deliverable to the project and relationship with
other deliverables

WP6 targets directly Objective 4 of the NECOS project, which is stated as to demonstrate the full impact
of the NECOS solutions by means of the use case implementations. In other words, this WP evaluates
and shows how the NECOS LSDC platform is able to tackle the challenges presented in specific cloud
network slicing use-cases/scenarios.

To achieve the above general project objective, this WP is related to all the others technical WPs. In
fact, WP6 took inputs from WP2, where the two project use cases were refined into more elaborated
scenarios. All these scenarios require physical and virtual infrastructures interconnected by means of
physical and virtual networking resources. This means that WP6 acts as an enabler of the appropriate

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 12

resources as dictated by the project use cases and scenarios. In addition, WP6 is also related to WP3,
WP4 and WP5 together getting inputs and providing outputs to each one of them. In fact, WP4 and
WP5 brought the design of the mechanisms and artefacts, all together within the architecture
framework of WP3. The functional and non-functional capabilities of such designs had to be reflected
in the evaluation tests and showcases to be implemented in WP6. In other words, WP6 designed its
set of evaluation tests (i.e., what is called demonstrations in WP6) oriented to specific capabilities and
KPIs, from what was designed in WP4 and WP5. Finally, from the results obtained in those tests,
feedback was provided to the same WPs to refine architectural aspects and specific characteristics of
NECOS LSDC and APIs.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 13

 NECOS Platform Validation Plan
This section presents the NECOS platform validation plan, which is depicted in Figure 2. These tests
are driven by the prioritization of D2.2 requirements and architectural concepts in order to fulfil the
acceptance plan defined in subsection 2.3.

Figure 2. Overall NECOS platform validation plan.

Testing a system involves executing the software system with test cases that are derived from the
specification of the real data to be processed. The tests aim to demonstrate to both developers and
customers that the produced software meets the expected requirements. As shown in Figure 2, the
tests were divided into 4 stages following well-known methodologies from the literature [Sommerville
2011].

Unit test: includes all testing activities carried out by the team developing the system. Unit testing,
where individual program units or object classes are tested, should focus on testing the functionality
of objects or methods. Component testing, where several individual units are integrated to create
composite components, should focus on testing component interfaces.

Integration tests: the objectives of these testing activities are to detect faults due to interface errors
or invalid assumptions about interfaces, including: interface misuse refers to a situation where a
component calls another one and produces an error while using the related interface e.g., the
parameters are provided in the wrong order; interface misunderstanding is raised when a calling
component embeds assumptions about the behaviour of the called component which are incorrect;
timing errors happen when the called and the calling components operate at different speeds, and
out-of-date information is accessed.

System testing: the system testing of an application is done on the whole software system in order to
check the overall compliance of the product with the functional requirements. It is performed when
some or all of the components in a system are integrated and it can, thus, be tested as a whole. In this
deliverable, the results of both the functional and non-functional testing will be presented. The
behaviour of the system is tested to check if it meets the specified requirements using the real data.

Acceptance verification: all features (Table 1) desired in a system should be covered by the system
tests for the acceptance to be properly completed.

In order to validate and demonstrate the NECOS overall approach, we have defined and setup five
interrelated demonstrations: MUlti-Slice/Tenant/Service (MUSTS), Marketplace (MARK), Experiments
with Large-scale Lightweight Service Slices (ELSA), Machine-learning based orchestration of slices

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 14

(MLO), and Wireless Slicing Services (WISE). Note that the integration test is presented only for the
demonstration MUSTS, since it involves several components developed by different teams.

 Prioritization of Requirements
The NECOS architecture was designed considering approximately 100 different requirements, whose
prioritization process is presented in Figure 3. In deliverable 3.1 [D3.1] the prioritization of scenario’s
requirements identified in deliverable 2.1 [D2.1] was assessed making use of the Quality Function
Deployment (QFD) method. Based on the requirements prioritization, a set of features was identified.
Next, the deliverable 2.2 [D.2.2] presented a new set of requirements focusing on the NECOS platform
but using the scenario's requirements from D2.1 as baseline. Thus, in order to reuse the QFD analysis,
it was necessary to provide a link between the requirements from D2.1 into D2.2, and then, generate
a prioritization from D2.2 requirements that was presented in D3.2.

Figure 3. D2.2 requirements prioritization process.

Table 1 presents revised prioritization of D2.2 requirements. This is the set of requirements and
features that will drive the all validation process.

Table 1. Prioritization of requirements from D2.2.

Feature D2.2 requirements

Slice Provisioning NFR‐4.1, NFR‐4.3, FR-1.1, FR-1.2, FR-1.3, FR-2.8, FR-2.10, and FR-9.1

Isolation NFR-2.X, NFR‐4.1, NFR‐4.3, FR-1.1, FR-1.2, FR-1.3, FR‐2.3, FR-2.6, FR-2.8,
FR-2.10, FR-5.2, and FR-9.1

Management NFR‐4.1, NFR‐4.2, NFR-6.X, NFR-7.X, FR-1.2, FR‐1.3, FR‐2.1, FR‐2.4, FR‐
5.3, and FR‐6.1

Elasticity NFR-4.X,, NFR-5.3, NFR-5.4, NFR‐12.3, FR-2.11; FR-2.12, FR‐4.1, and FR‐
4.4

Scalability NFR‐4.X, FR-1.2, FR‐2.3, FR-2.6, FR-2.7, FR-2.8, and FR-2.9

Monitoring NFR‐12.4, FR-1.1, FR‐2.3, FR-2.6, FR-2.7, FR-2.8, FR-2.9, FR-2.10, FR‐3.4,
FR‐5.1, FR-5.2, FR-7.2, FR-7.3, FR-8.1, FR-8.2, FR‐9.5, and FR‐10.2

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 15

VIM-independence NFR-5.3 and FR‐4.3

Bare-metal slice NFR-6.X

The 8 main requirements, which are underpinning the validation process, are as follows:

● Slice Provisioning: is the functional architecture feature related to supporting rapid
resource/service provisioning using the Marketplace to discover the resources that will be
deployed by the DC/WAN Slice controllers;

● Isolation: is the factor that distinguishes slicing from other cloud-based solutions. Since the
slices are isolated from each other in all network, computing, and storage planes, the user
experience of the slice will be the same as if it was a physically separate infrastructure;

● Management: the tasks related to this feature are executed by the LSDC Slice Provider. It
includes the Slice Resource Orchestrator (SRO), which combines the slice parts that make up a
slice into a single aggregated entity. It is responsible for the orchestration of several elements
that are utilised for the creation of the end-to-end slices (either Virtual Machines (VMs) and
virtual links or Physical Machines and tunnels in the resource domains), as well as for the actual
deployment of the service elements on the above slices, on the basis of the embedding
decisions performed by the Tenant via the Service Orchestrator;

● Elasticity: when a slice has to be augmented with resources regardless of their location (or
other requirements that cannot be fulfilled with the already allocated slice parts), the SRO will
contact the Slice Builder to delegate the process of looking for additional resources that can
be attached to the existing slice as new slice parts;

● Scalability: is related to the system ability to increase workload size within the existing
infrastructure (hardware, software, etc.) without impacting performance of the running
services. We can think in scalability in two different dimensions: scalability of a particular
provisioned slice and scalability of the number and size of the slices provided.

● Monitoring: The Infrastructure and Monitoring Abstraction (IMA) component, allows the Slice
Provider to interact with various remote Virtual Infrastructure Manager (VIMs) and Wide-area
network Infrastructure Manager (WIMs) using plug-in adaptors with the relevant API
interactions. Besides that, it allows the SRO to interact with the remote clouds and the
monitoring subsystems therein in a generic way, in order to provision the actual tenant
services and to monitor the remote resources running those services;

● VIM-independence: The tenant has direct control of the VIM, including the decision of when
and where to deploy the VIM;

● Bare-metal slice: It is a slice created using physical resources instead of virtual resources.

 NECOS key Performance Indicators
The NECOS KPIs were formerly defined in D2.1. Based on the prioritization of requirements, we have
then identified a subset of KPIs to be used in the validation process. This subset is presented in Table
2 together with the information about the associated features, the proper way to measure them and
relevant test implementation aspects.

Table 2. Prioritized KPIs associated to NECOS features.

Features KPI How to measure

Slice KPI4 - Average slice Collect the time measured from the tenant

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 16

Provisioning provisioning time (in seconds) during the Create slice workflow.

Isolation KPI15 - Slice isolation index

Collect Central Processing Unit (CPU) and / or
RAM utilisation data from two slices while
stressing the resources of a given slice without
affecting the resources of the other slice.

Management KPI3 - Average service
provisioning time (in seconds)

Collect the overall time for deploying the service
measured from the perspective of the Tenant.

Elasticity KPI1 - Average elasticity
response time (in seconds)

Measure the time between the instant when a
trigger for the elasticity is generated and the
instant when the elasticity operations have been
accomplished.

Scalability

KPI4 - Average slice
provisioning time (in seconds)
during the Resource Discovery
Create slice workflow

Measure resource discovery characteristics for
slices of different sizes and with a varying
number of providers. The former will include the
number of messages exchanged, alternative
offers on Data Center (DC) and Net slice parts,
the number of alternative slice instantiations
generated by the offers, and time to complete
the discovery.

Monitoring KPI 7 - Monitoring-data
availability

Show the amount of data from IMA collected in
each slice over the slice life-time.

VIM-
independence

KPI4 - Average slice
provisioning time (in seconds)

Collect the time spent to deploy different VIMs in
the same Slice.

Bare-metal slice KPI9 – Physical Server
Utilization

Collection of the measurements related to the
allocations of different (physical) resources that
form the slice parts. Demonstrating that
overloading one end-to-end Slice does not affect
the other Slices in the same Resource Provider,
as they use a disjointed set of physical resources.

The KPIs presented are described next:

● KPI 1 - Average elasticity response time (in seconds): it is the time required to perform the
elasticity action. It starts with the first elasticity request performed by the tenant until the
operation is completed when the slice is reconfigured;

● KPI 3 - Average service provisioning time (in seconds): it is the time required to perform the
service provision. It includes the time interval since the service request is performed by the
tenant (after the provision) until the service is completely instantiated on the slice;

● KPI 4 - Average slice provisioning time (in seconds): it is the time required to perform the slice
provision. It starts with the request performed by the tenant until the slice is completely
allocated and instantiated together with the VIMs.

● KPI 7 - Monitoring-data availability: Provision of monitored data to the Slice Provider operator
and the tenant;

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 17

● KPI 15 - Slice isolation index: Slice isolation to highlight data segregation over a multi-domain
environment.

● KPI 9 - Physical Server Utilization: Quantifies the resource-efficiency of the NECOS Slice as a
Service capability measuring the physical utilization of CPU and / or memory.

 Acceptance Plan
The subset of non-functional requirements presented in Table 1 are supported through the KPIs
identified in Table 2. Since the Slice Creation and Slice Elasticity workflows make reference to most of
the presented functional requirements (see Figure 4), we decided to exercise them in order to validate
the functional requirements.

Figure 4. Functional requirements used in the workflows.

For system testing, each of the functional and non-functional requirements listed in Table 2 will be
validated separately. The functional requirements validation will be performed with the focus of
verifying that they have been implemented correctly and completely. If errors are found, these will be
reported, and corrections or changes will be implemented to meet the requirements. For non-
functional requirements, Table 2 presents how to evaluate these requirements, how to measure and
implement the test. The acceptance criteria for system tests are: i) all the priority bugs are fixed and
verified; ii) all the test cases have passed.

System testing is performed end-to-end by developers and testers to check if the software meets the
specified requirements. While testing how the system is behaving as a whole, also its functionality and
performance are checked by using demo data (including possible dummy inputs) instead of the
production one. Through these tests the software is checked for complete specification including

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 18

hardware and software, memory, and number of users. Defects found during the system testing will
then be fixed based on priorities.

For acceptance verification, the system tests results will be verified to approve the features coverage.
All features must provide evidence that: i) there are no critical defects left open; ii) all functional and
non-functional requirements attached to the features are correct and complete; and iii) the solution
process is working fine, receiving entries correctly, processing as specified and returning correct
outputs.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 19

 Integrated NECOS Platform Testing Environments
The NECOS integrated test environment is a distributed resource infrastructure that was used to host
the NECOS prototypes in different locations in order to show that the devised distributed architecture
is suitable for deployment in realistic scenarios.

 Prototypes
The NECOS platform components used in the demonstrations are either developed from scratch or
based on existing software components. Implementations from scratch usually imply fewer
dependencies and requirements from external software and libraries, while, in general, an
implementation based on re-using solutions contribute to an increased number of requirements. The
prototypes that were fully presented in deliverable 5.2 [D5.2] are briefly summarised in this
deliverable.

 The Slice Builder

Description
The Slice Builder is responsible for building a full end-to-end multi-domain slice from the relevant
constituent slice parts. When the Partially Defined Template (PDT) message has been specified, the
Slice Specification Processor sends such a message to the Slice Builder invoking the
initiate_slice_creation method.

Functional requirements implemented
● FR‐3.1 ‐ Analysis of specific policies and rules for slice requests
● FR‐3.2 ‐ Request resources for slice parts
● FR‐3.3 ‐ Provide different mechanisms for defining the final slice specification
● FR‐3.4 ‐ Creation of contracts for resources reservation among resource providers, NECOS

platform and tenants
● FR‐3.5 ‐ Perform reservation and activation of slice parts
● FR‐3.6 ‐ Provide slice and slice parts information

 Slice Spec Processor

Description
The Slice Specification Processor component handles the requests for slice creation coming from the
Slice Activator (in the tenant's domain). In our prototype implementation, the Slice Specification
Processor is implemented as a RESTful service using Python.

Functional requirements implemented
● FR‐1.3 ‐ Provide slice management interface (SSP)
● FR‐2.1 ‐ Management of connections between slice parts to have an end‐to‐end slice
● FR‐2.2 ‐ Interact with Slice Database for querying purposes and to provide slice updates
● FR‐2.3 ‐ Continuously update IMA regarding VIM, WIMs and Monitoring pointers
● FR‐2.4 ‐ Provide operational functions for slice management
● FR‐2.5 ‐ Request slice parts removal
● FR-2.6 - Process slice monitoring information provided by the IMA
● FR-2.7 - Evaluate the need for upgrading or downgrading the resources within a slice
● FR-2.8 - Evaluate requests for upgrading or downgrading the resources within a slice
● FR-2.9 - Selection of resources that will be allocated or freed in the elasticity process

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 20

● FR-2.10 - Request the addition or removal of resources within slice parts
● FR-2.11 - Provide an elasticity process that prioritizes vertical elasticity over a horizontal

approach
● FR-2.12 Implement horizontal elasticity by requesting the creation or removal of slice parts
● FR‐3.1 ‐ Analysis of specific policies and rules for slice requests
● FR‐3.2 ‐ Request resources for slice parts
● FR‐3.5 ‐ Perform reservation and activation of slice parts

 DC and WAN Slice Controllers

Description
The DC Slice Controller is the component of the NECOS Architecture in charge of creating DC slices
within the data centre. It is responsible for allocating the required compute and storage resources for
a given slice part, and returning a handle to a VIM running on it, for each data centre.

The WAN Slice Controller component resides inside each Network Provider and that dynamically
creates a network slice, as a part of a full cloud network slice. A network slice is a set of virtual links
that connects two DC slices. In order to create a network slice, the WAN Slice Controller manages all
of the network resources in the network provider domain that are allocated to participate in slicing
and keeps track of which network resources have already been allocated to which slice.

Functional requirements implemented
● FR‐4.1 ‐ Support allocation, removal and modification of resources for slice parts
● FR‐4.2 ‐ Accept or reject contracts for resource reservation
● FR‐4.3 ‐ Instantiation and removal of VIMs and WIMs for slice parts
● FR‐4.4 ‐ Support requests for connecting and disconnecting slice parts together
● FR‐4.5 ‐ Process requests for upgrading and downgrading resources within slice parts

 WAN Slice Controller

Description
An (additional) implementation of the WAN Slice Controller has been developed in support of the
Wireless Slicing sErvices (WISE) demonstration (see Section 4). The prototype leverages virtualization
capabilities from both OpenWrt and Open vSwitch to create WiFi Local Area Network (LAN) slices on
top of an off-the-shelf WiFi access point.

Functional requirements implemented
● FR‐4.1 ‐ Support allocation, removal and modification of resources for slice parts
● FR‐4.2 ‐ Accept or reject contracts for resource reservation
● FR‐4.4 ‐ Support requests for connecting and disconnecting slice parts together
● FR‐4.5 ‐ Process requests for upgrading and downgrading resources within slice parts

 Slice Resource Orchestrator (SRO)

Description
It is responsible for combining the slice parts that make up a slice into a single aggregated Slice. It is
also responsible to invoke the proper IMA resource adapters in order to instantiate the required
service elements on the different slice parts (of the end-to-end Slice). This is done according to the
particular service embedding strategy that was requested by the Tenant via their Service Orchestrator.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 21

Functional requirements implemented
The current SRO implementation took the functional requirements in Deliverable 2.2 as input and
covered several of them. Currently, the SRO implements the following functional requirements.

● FR-2.1 - Management of connections between slice parts to have an end-to-end slice
● FR-2.2 - Interact with Slice Database for querying purposes and to provide slice updates
● FR-2.3 - Continuously update IMA regarding VIM, WIMs and Monitoring pointers
● FR-2.4 - Provide operational functions for slice management
● FR-2.6 - Process slice monitoring information provided by the IMA
● FR-2.7 - Evaluate the need for upgrading or downgrading resources within a slice
● FR-2.10 - Request the addition or removal of resources within slice parts
● FR-2.11 - Provide an elasticity process that prioritizes vertical elasticity over a horizontal

approach
● FR-2.12 - Horizontal elasticity by requesting the creation or removal of slice parts

 Slice Database

Description
The Slice Database is a module that interacts with the Slice Resource Orchestrator in the Slicing
Orchestrator. The Slices Database keeps information about the topology and the resources of the
slices for their whole lifetime. The Slices Database stores the data of the deployed slices such as
location, pointers and identifiers of its parts.

Functional requirements implemented
The Slice Database implements the following functional requirements.

● FR-6.1 - Provide an interface for slice management
● FR‐6.2 ‐ Provide information about slices, slice parts and services

 Infrastructure & Monitoring Abstraction (IMA)

Description
IMA is responsible for ensuring the monitoring process of the end-to-end Slices created in the
context of a NECOS Slice Provider. Each end-to-end Slice will include different slice elements, i.e., the
resource substrate represented by the slice parts, as well as the virtual resources associated with the
service elements running on those slice parts. Since IMA provides an adaptation layer between the
Slice Resource Orchestrator and the VIM / WIM running in each slice part, it will also be responsible
for the management of the services in terms of deploying, re-deploying and deleting the service
components running inside each of the slice parts.

Functional requirements implemented
● FR-5.2 - Provide slice monitoring metrics
● FR‐5.3 ‐ Provide management operations for deployment of virtual functions
● FR‐6.2 ‐ Provide information about slices, slice parts and services (Slice Database)
● FR-9.3 - Start service deployment
● FR-9.4 - Support management functions for running slices
● FR‐10.1 ‐ Process service deployment requests
● FR‐10.2 ‐ Provide service access and monitoring interfaces to the tenant

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 22

● FR‐11.1 ‐ Provide service deployment within a slice

 Slice Broker and Slice Agent with RabbitMQ

Description
The Slice Broker and Slice Agents components are part of the NECOS Marketplace. The Slice Broker is
the component that receives a PDT Message request, decomposes it to its constituent slice parts and
addresses each slice part request to different Slice agents. The SRA message returned at the end of
this process, contains all the alternative offerings from providers for each part. This prototype was
implemented in Python.

The Slice Agents are responsible for answering slice parts requests by matching the latter (i.e., ensuring
“coverage”, see D5.2) to provider resources and reporting back with an offer that minimizes the slice
part cost. The prototype implementation includes components in Python and in SWI-Prolog (Constraint
Logic Programming System).

The infrastructure that allows message exchange between the Slice Broker and the Slice Agents relies
on the RabbitMQ 1 open source messaging broker that also handles the Slice Agent Registration
process.

Functional requirements implemented
● FR-7.1 - Support a search mechanism for requesting resources from infrastructure providers
● FR-7.2 - Capability of identify potential network resource providers based on DC resource

offers
● FR-7.3 - Provide resource offers in the form of alternative resources
● FR-7.4 - Accept registration of Slice Agents
● FR-8.1 - Process resource requests and check local availability
● FR-8.2 - Provide resource options as answers for resource requests
● FR-8.3 - Constantly check the availability of resources in the local domain
● FR-8.4 - Registration with the Slice Broker

 Slice Broker with HUG

Description
Provides a rendezvous point where the Resources Providers can register and accept the requests from
the Slice Provider that are routed by the Broker. The prototype is implemented as a RESTful service
using Python and HUG2.

Functional requirements implemented
● FR-7.1 - Support a search mechanism for requesting resources from infrastructure providers
● FR-7.2 - Capability of identify potential network resource providers based on DC resource

offers
● FR-7.3 - Provide resource offers in the form of alternative resources
● FR-7.4 - Accept registration of Slice Agents

1 https://www.rabbitmq.com/
2 https://www.hug.rest/

https://www.rabbitmq.com/
https://www.hug.rest/

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 23

 Slice Agents with HUG

Description
Allows the Resource Providers to expose information about the available WAN and DC resources. After
the Agents registration in the Broker, requests originated from the Slice Provider can be processed.
This prototype is implemented as a RESTful service using Python and HUG.

Functional requirements implemented
● FR-8.1 - Process resource requests and check local availability
● FR-8.2 - Provide resource options as answers for resource requests
● FR-8.3 - Constantly check the availability of resources in the local domain
● FR-8.4 - Registration with the Slice Broker

 The NECOS roles
This section describes the types of NECOS roles namely, Slice Provider, Resource Provider, and
Resource marketplace. These roles have been described in the deliverable "Consolidated definition of
use cases, business models and requirements analysis" [D2.2]. Also, the needed NECOS software
components for each NECOS role are listed. Also, the NECOS software components needed for each
NECOS role are listed.

 Slice Provider
The Slice Provider is composed by following NECOS software:

● The Slice Builder and Slice Spec Processor;
● SRO;
● Slice DataBase;
● IMA.

 Resource Provider
The Resource Provider is composed by the following NECOS software:

● DC/WAN Slice Controllers;
● Slice Agents.

 Resource Marketplace
The Resource Marketplace is composed by the following NECOS software:

● Slice Broker.

 Infrastructure for validation
The infrastructure for validation is a combination of different Islands (i.e., a set of resources made
available from a single administrative domain) together with the network interconnecting them.
Connectivity between Islands could be through either private or public infrastructures like Software
Defined Networking (SDN) infrastructures, Virtualized infrastructures or standard Internet Service

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 24

Provider (ISP) connectivity. Due to security constraints, private networks through public Internet are
set up between the different islands for our validation purposes.

Figure 5. NECOS Integrated test environment.

 Islands
The NECOS integrated test environment is composed, as presented in Figure 5, by the following islands:

● Slice Provider at UFG: 1 Dell EMC PowerEdge R740 server, equipped with two Intel Xeon Silver
4114 processor, 128 GB (8x 16GB RDIMM, 2666MT/s, Dual Rank) of RAM, and 12 TB of HD;

● Slice Provider at UFU: 1 DELL PowerEdge R740 of 64GB-RAM and two Intel Xeon Silver 4114
2.2G 10C/20T, each server;

● Resource Marketplace at UOM using Slice Broker with RabbitMQ: One Dell PowerEdge R630
(8 CPU cores @2.1Ghz, 16-48GB RAM) server hosting (XEN Server virtualization environment)
hosting VMs for the Broker and the RabbitMQ messaging platform;

● Resource Marketplace at UFPA using Slice Broker with HUG: The Slice Broker is running in a
VM with 2 CPUs and 4 GB of memory hosted in a Server Dell EMC PowerEdge R740, Intel Xeon
Silver 4114 2.2G, 10C/20T, 9.6GT/s 2UPI, 14M Cache, Turbo, HT (85W) 64GB DDR4-2400;

● Resource Provider at UFU: The resource provider located at UFU consists of a rack with three
DELL PowerEdge R740 of 64GB-RAM and two Intel Xeon Silver 4114 2.2G 10C/20T, each server.
The servers compose an OpenStack cluster in which virtual machines are used to deploy slice
parts by adopting Kubernetes as VIM;

● Resource Provider at UNICAMP: The resource provider located at UNICAMP consists of a Dell
PowerEdge R740, with OS: Linux Ubuntu 18.04 LTS, Kernel: 4.15.0-51-generic x86_64, two Intel
Xeon Silver 4114 CPU @ 2.20GHzD-1518 processors, RAM 64GB DDR4 and HD 2TB;

● Resource Provider at UFSCar: The resource provider located at UFSCar Sorocaba consists of a
Supermicro model X10SDV-TP8F, with OS: Linux Ubuntu 18.04 LTS, Kernel: 4.15.0-58-generic
x86_64, CPU Quad core Intel Xeon D-1518 2.2GHz (-MT-MCP-) with 8 threads, RAM 64GB DDR4
and HD 2TB;

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 25

● Resource Provider at UOM: This resource provider (acting as an edge cloud server) is located
at the University of Macedonia and has OS: Linux Ubuntu 18.04 LTS, kernel: 4.15.0-55-generic
x86_64, CPU Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz, 16GB DDR3 RAM, and HD 1TB;

● Resource Provider at UFRN: UFRN's REGINA-Lab testbed is built on top of an OpenStack-
empowered cluster enclosing three Dell PowerEdge R740 servers interconnected by
OpenFlow-enabled wire-meshed switches with 1 Gbps interfaces. The compute infrastructure
is composed by three servers each featuring 40 vCPUs and RAM of 64 GB. The SDN
infrastructure entails 6 Mikrotik RB951G-2HND (CPU of 600 Mhz and RAM of 128 MB)
switches, along with two TP-Link 802.11b/g/n TL-WR1043ND v3 Access Points to provide
broadband WiFi-sharing connectivity;

● Resource Provider at UCL: The resource provider located at UCL is based on: 1x Blade server
M630, relying on 2 x Intel(R) Xeon(R) CPU E5-2680 2.70GHz and 160Gb of RAM; 1x Dell
PowerEdge R730 with Intel Xeon E5-2680 v3 2.5GHz, 12 cores, 192GB RAM, 1.2TB HDD; 4x
servers with Quad-Core AMD Opteron(R) Processor 2347 HE, 32 GB RAM, 700GB HDD;

● Resource Provider at 5TONIC: the resource provider enabled by TID at 5TONIC premises is
based on 1x PowerEdge R720 with 2x Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz, 6 cores per
socket (for a total of 12 cores or 24 vCPU), 128GB of RAM, and 2TB as HDD;

● FED4FIRE Experimental Testbeds for the Marketplace Resource Discovery Demonstration:
Information regarding resource availability is going to be obtained by the FED4FIRE testbeds,
that will be considered as resource providers in the marketplace demo. Hosts in some of the
testbeds listed below are going to host the Slice Agents of the Marketplace Resource
Discovery. We list below information for the testbeds used and examples of configurations of
nodes (hosts/servers) in clusters, where the latter are groupings of identical nodes. For
conciseness, we omit full node specs of all clusters in a testbed.

○ Virtual Wall 1: 3 clusters, 206 nodes (servers), e.g. cluster:
■ 100 x pcgen2 nodes: cpu 2x Quad core Intel E5520 (2.2GHz) CPU, ram 12GB,

hdd 1x 160GB harddisk, lan 2-4 gigabit nics per node.
○ Virtual Wall 2: 5 clusters, 162 nodes (servers), e.g. cluster:

■ 100x pcgen3 nodes: cpu 2x Hexacore Intel E5645 (2.4GHz) CPU, ram 24GB, hdd
1x 250GB harddisk, lan 1-5 gigabit nics per node.

○ Cloudlab Utah: 1 cluster, 315 nodes (servers), e.g. cluster:
■ 315 x m400 nodes: cpu: Applied Micro X-Gene system-on-chip, Eight 64-bit

ARMv8 (Atlas/A57) cores at 2.4 GHz, ram 64 GB, hdd 120 GB of flash (SATA3).
○ Cloudlab Wisconsin: 2 clusters, 100 nodes (servers), e.g. cluster:

■ 90 x Cisco UCS SFF 220 M4 nodes: cpu: 2x Intel E5-2630 v3 85W 8C at 2.40 GHz
for a total of 16 cores, ram 128 GB, hdd 375 TB.

○ Grid5000: 33 clusters, 1064 nodes (servers), e.g. clusters:
■ 32 x Grenoble dahu nodes, cpu: 2 x Intel Xeon Gold 6130 16 cores/CPU, ram

192 GB, hdd 240 GB SSD + 480 GB SSD + 4.0 TB HDD, lan 10 Gbps.
■ 64 x Nancy grvingt nodes, cpu: 2 x Intel Xeon Gold 6130 16 cores/CPU, ram

192 GB, hdd 1.0 TB HDD, lan 10 Gbps

 Private Interconnection between Europe and Brazil
This section describes how the interconnection between the islands was achieved and the technologies
used in the NECOS demonstrations.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 26

Islands connectivity
All the islands running the Slice Provider components are capable of providing network connectivity to
the Tenant, in a way that instantiated DC’s resources at an island can have network connectivity to
another DC resource instantiated on a remote location. This will include the case of different slice parts
that have been allocated in several NECOS islands but belong to a common end-to-end Slice. On the
control level, all NECOS components use standard network connections to communicate, making use
of the Internet and VPN.

Software
The connectivity at the slice parts level is provided by Virtual Extensible LAN (VXLAN) tunnels using
Open vSwitch (OVS)3. An OVS bridge is created on demand for each instantiated slice part and is then
connected to another OVS bridge instantiated on the remote edge where the connectivity must take
place.

We have implemented a solution that takes care of the setup of the multiple tunnels as part of our
WAN Slice Controller component, as described in subsection 3.1.1. In practice, the solution is based on
multiple agents located at each DC resource provider and one central element that communicates with
the agents while also managing a database containing information regarding all created connections
and their respective attributes. The resulting connectivity is a L2 network overlay over the existing L3
network layer, that in most cases relies on the Internet.

Issues
By default, the VXLAN tunnels do not implement encryption, so security concerns might be an issue to
be considered. This can be overcome by setting Virtual Private Network (VPN) tunnels under the VXLAN
tunnels, but at the moment it is not part of our solution. As one of the requirements of our network
connectivity solution, the Slice Provider edges to be connected need to be able to communicate to
each other over the network already, since this connectivity will be the base to the overlay network to
be instantiated.

Most of our islands have a public IP address reachable over the Internet. However, in the case of the
Telefonica island, the only way of accessing the 5TONIC server running the DC component was through
a VPN connection. Therefore, the VXLAN tunnels for instances located on this edge were configured
using VPN tunnels. Although this approach allowed solving the above issue, it required an additional
layer of complexity which also impacts the performance of the connection.

3http://docs.openvswitch.org/en/latest/faq/vxlan/

http://docs.openvswitch.org/en/latest/faq/vxlan/

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 27

 Demonstrations and NECOS Validation Results
In the context of the NECOS project, five demonstrations have been worked out. The main one involves
multiple tenants who request services provided via the NECOS platform running in an integrated test
environment. The remaining demonstrations focus on more narrowly defined and specific aspects like
scalability, intelligent mechanisms, and so on. Each demonstration has an objective with a series of
inputs provided by the tenant, and some expected outputs. The tenant is responsible for the service
running in the slice, playing the role of a customer requesting the slice in order to accommodate the
deployment of a service.

 MUlti-Slice/Tenant/Service (MUSTS)
MUSTS is the main NECOS demonstration that creates 2 slices using one slice provider hosted by UFG,
the marketplace hosted by UFPA, and four resource providers (UFSCar, 5TONIC, UoM and UNICAMP),
as presented in Figure 6. Slices requested by two different tenants are shown through their complete
life cycles. Each tenant has specific resource and service constraints that must be supplied and
guaranteed by NECOS. More specifically, one tenant runs a Touristic service while the other runs an
Internet of Things (IoT) service, which are derived, respectively, from the Network Slicing for Touristic
Content Distribution and Network Slicing for Metropolitan Integrated Monitoring scenarios [D2.2].

Figure 6. Instantiation of the MUSTS demo on the distributed experimental infrastructure.

 Objectives
This demonstration aims at exercising the following key features of NECOS: slice creation, slice
decommission, slice monitoring, service deployment, service update, VIM heterogeneity, and elasticity
upgrade (both vertical and horizontal). The features slice creation, slice decommission, slice
monitoring and service deployment are features exercised in both slices, as they are essential for every
slice. However, the feature VIM heterogeneity is exercised only in the Touristic service slice to
showcase the capability of NECOS to support different VIM technologies, in our case, Docker and XEN.
The elasticity feature is exercised in the IoT service slice, in which we demonstrate the NECOS capability
of vertical and horizontal elasticity upgrades.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 28

Touristic Service for End-to-End Slice
The touristic Content Delivery Network (CDN) service is a cloud network slice use that delivers touristic
content to users based on their geographic location. The idea is that tourists visiting specific locations
(e.g., cities, archaeological sites, museums, churches, or towers) are more likely to request content
related to a geographical site.

Assumptions of the touristic CDN scenario include: i) a central Web server hosting all content
(videos/web pages), and ii) three edge cloud nodes hosting a single video and a web site related to
their geographic location. For instance, the core cloud node could be Brazil-Unicamp, an edge cloud
node with Greek Touristic content could be Greece-UOM, an edge cloud node with Spanish content
could be 5G-Tonic and another edge cloud with Brazilian content could be Brazil-UFSCar. Touristic
content requests (video or web content) from a visitor sightseeing Spain are directed either to the local
edge cloud server, in case that the requests are related to Spain (e.g., visiting hours for the Royal Palace
of Madrid), or to the core server if his requests are irrelevant to his position (e.g., a youtube video for
healthy eating).

Our implementation approach regarding the aforementioned service aims at highlighting how the CDN
services benefit by using the NECOS Platform. More importantly, we demonstrate that CDN technology
brings services close to the end-users achieving efficiency not only in terms of performance (e.g.,
connection time, download time) but also in respect to the processing resources required. For
example, in the touristic CDN service, applications running at the network edge are lightweight, and
the edge infrastructure computing resources are much less powerful than the ones at the core. What
is more, the NECOS Platform facilitates the deployment of such services.

Figure 7. CDN Slice Overview.

Figure 7 shows the connections among the components in the touristic CDN service. Boxes in blue
represent the slice-parts holding the CDN service components. Each slice part in the touristic CDN
deployment is composed of a single VM. Such figure also shows the different VIM technologies being
used in a geographically distributed slice: the dc-core is using XEN as the VIM and the dc-edges are

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 29

using Docker. The dc-core slice part accommodates the content services and the Domain Name System
(DNS) load balancer is responsible to direct the requests to the appropriate DC slice part (core or edge).
As previously mentioned, the requests are shared among the DC slice-parts according to the client’s
geographic location. The dc-edges host the content services and benchmarking tools (e.g., load testing
tools), which are used to test the performance of touristic service.

Experimental setup

Core DC - the applications that are running in the core are the following: the DNS load balancer, an
Apache web server which provides all the web pages, VLC video streaming servers, and the Grafana
and Influx-db monitoring tools in the touristic Web Server. The inputs in the monitoring tools are the
results from the benchmarking tools, which are running on edge cloud nodes.

Edge DC - the services at the edge dc slice parts have been containerized (e.g., Docker). For the web
services, we use flask and for the video streaming services we use VLC. The benchmarking load testing
tool used is jmeter.

DNS Load balancer - it has a major role in the touristic CDN deployment. The DNS server uses a
JavaScript Object Notation (JSON) configuration file (shown in Figure 8) which has the current
information about domain names and slice parts’ IPs. In this section, we present only the part of the
JSON file which is used for the touristic CDN scenario for an edge cloud slice (e.g., dc-edge-brazil).

Figure 8. JSON file used for touristic CDN scenario.

The DNS can be reconfigured while it is running so we can easily apply any changes that happened
after the deployment (for example the DC’s IPs). So particularly, the DNS should know the slice parts’
IPs (the IPs are defined in the JSON configuration file), while the core’s IP should be added in the edge
slice parts’ resolv.conf file.

 IoT Service
The IoT Demonstration aims to show that NECOS is suitable and also a facilitator in supporting the
deployment, management and operation of real IoT solutions; being able to provisioning and
monitoring resources, deploying services and scaling slice resources according to load changes. As
mentioned above, beyond demonstrating the slice creation, slice decommission, slice monitoring and
service deployment, this slice specifically showcases the service update and elasticity upgrade, both
vertical and horizontal.

The chosen IoT scenario consists of a real-time cargo monitoring and tracking IoT solution, where a
monitoring device with wireless communication and multiple sensors (temperature, humidity, light,

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 30

and gps) is attached to a cargo container and rides with it all along its journey. This device periodically
“wakes-up” and transmits precise monitored data to a centralized system, which allows customers to
have visibility of their goods in movement and being notified when something happens with their cargo
(door openings, extreme temperature shifts, etc.). This scenario is illustrated by Figure 9.

Figure 9. Real-time cargo monitoring and tracking.

The IoT demonstration was built using Dojot, an open source IoT Platform whose development is led
by CPqD, and a load testing tool for Message Queuing Telemetry Transport (MQTT) IoT devices, which
was customized for this demonstration. The software components were deployed, initially, in two slice
parts as depicted in Figure 10.

Figure 10. IoT Demonstration setup based on Dojot micro services.

The Core DC (slice part 1) runs the cloud Dojot micro services, which are responsible for: managing the
IoT devices life cycle, storing telemetry data, and providing Representational State Transfer (REST) and
socket.io interfaces to retrieve, respectively, historical and real time data about the devices. In this

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 31

Demonstration the slice part 1 is a set of three VMs managed by the Kubernetes VIM (one VM hosting
the master node and the other two representing the worker nodes). The Dojot micro services are
deployed in the worker nodes.

The Edge DC (slice part 2) runs the edge Dojot micro service, called MQTT IoT-Agent, which is
responsible for establishing connections with the IoT devices and transform the data to be transmitted
to the cloud micro services. In this Demonstration the slice part 2 is a set of two VMs managed by the
Kubernetes VIM (one VM hosting the master node and the other representing the worker node). The
edge Dojot micro service is deployed in the worker node.

The device simulator runs outside the NECOS infrastructure and simulates connected IoT devices
publishing telemetry data according to some input settings.

Figure 11 shows the IoT Slice overview. The Core DC is at Unicamp, Campinas, and the Edge DC is at
5TONIC, in Madrid. Note that for horizontal elasticity upgrade, a new slice part is created at UFSCar,
Sorocaba.

Figure 11. IoT Slice overview.

The major flow of the telemetry data inside the platform is described in Figure 12 with each step
identified by a red circle with a number inside. A detailed description of each step is given below:

1) The simulated device opens an MQTT connection through a TCP Load Balancer, publishes some
telemetry data, and closes the connection;

2) The TCP Load Balancer redirects the connection/telemetry data to an instance of the MQTT
IoT-Agent;

3) The MQTT IoT-Agent authorizes the device connection and sends the telemetry data to the
REDIS DB, responsible for implementing the PUB/SUB of the MQTT Broker, and also sends it

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 32

with some extra metadata to the Apache Kafka, responsible for redistributing it to the other
dojot micro services;

4) The Persister micro service consumes the telemetry data from Kafka and stores it into the
MongoDB;

5) The DataBroker consumes the telemetry data and provides it through socket.io to the
registered clients.

Figure 12. Dojot data flow.

An increasing number of cargo containers was simulated, publishing telemetry data (temperature,
humidity, lightness, gps) with a given periodicity. When the machine hosting the IoT Agent in the edge
was overloaded due to an increase in the number of requests to the IoT Agent, elasticity took place to
avoid a degradation of the quality of the service (connections rejections, messages losses and long
response time). First of all, NECOS would try to do a vertical elasticity upgrade, which means to add a
new machine to host another IoT Agent in the same slice part. Specifically, in our case NECOS will make
vertical elasticity in the Edge DC (slice part 2). Then, after making vertical elasticity, the service is
redeployed so that the new machine receives the new IoT Agent and the requests coming from the
sensors are now balanced between both IoT Agents.

A second experiment that was done is related to horizontal elasticity. In this case, NECOS tries to make
vertical elasticity in the Edge, but there are no more resources in that slice part. Then, SRO triggers the
horizontal elasticity upgrade which means to add a new slice part to the existent slice. Specifically, for
this experiment, a new slice part at UFSCar is created. After the SRO receives the return about the
creation of the new slice part, it triggers the service update (redeployment) so that the new slice part
is used by the Dojot service. After the service redeployment, requests coming from the sensors are
balanced between the IoT Agent at 5TONIC (the overloaded slice part) and UFSCar.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 33

 Workflow
 Since this demonstration is the one which exercises the majority of the NECOS features and
follows the working flows defined in D5.1 and D5.2, the working flow presented in Figure 13 is
depicted in a higher level of detail.

Figure 13. MUSTS demonstration workflow.

● Step 1: The tenant calls the NECOS system to create a slice. In this call, the tenant must inform
the specification of the slice so that NECOS will be capable of building it;

● Step 2: This step, abstracted as a single step in this figure, follows the complete slice creation
working flow presented in D5.2. In this step, actions such as looking for candidate slice parts
in the Marketplace and start the monitoring of the slice are performed;

● Step 3: The NECOS system returns to Tenant all the details about the slice that was created,
including information about every slice part, physical resources, location, etc.;

● Step 4: The Tenant calls its Service Orchestrator so that it can embed into the slice the service
to be run. The Service Orchestrator can be a very smart engine or a very simple solution (even
performed by hand by an operator) to decide where to put every service inside the slice;

● Step 5: Service Orchestrator triggers the deployment of the service. NECOS is responsible for
parsing the YAML file received and dispatch specific commands in each slice part to deploy the
correspondent service inside the slice;

● Step 6: This step represents the elasticity. Specifically, for this Demonstration, it refers to the
vertical and horizontal elasticity upgrade, which means adding a new resource inside a slice
part or adding a new slice part, respectively. This is done when a defined threshold is reached.
For this Demonstration, the SRO is observing the CPU load of the machine where the IoT Agent
is running. When the load reaches 80%, the elasticity is triggered. Again, as with step 2, the
elasticity upgrade (both vertical and horizontal) abstracted here in a single step, is fully
described in D5.1;

● Step 7: This final step represents the slice decommission call done by the Tenant to delete the
slice as well as the service running inside it.

 Results
This demonstration validates 6 of the prioritized NECOS features. Each one of them is presented
together with the respective results from the experiments performed following the steps defined in
the last subsection.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 34

In order to create a slice, the steps 1 to 3 must be performed. Once this creation is started, the time is
collected in order to provide the average slice provision time in seconds (KPI 4). The provision time
includes the reservation time and the instantiation time, as presented in Figure 14. The instantiation
time is bigger because it incorporates both times to deploy the VIM on-demand and configure all the
resources to be part of the slice.

Figure 14. Average slice provisioning time (KPI 4).

Once all the slice parts are allocated, steps 4 and 5 are executed and the service is deployed as part of
the slice management tasks. Figure 15 presents the overall time for deploying the service from the
tenant.

Figure 15. Average service provisioning time (KPI 3).

After steps 4 and 5 are performed the service is running in the slice, so it is possible to overload one
slice in order to see if the isolation is working properly. Figure 16 shows the last 100 seconds before
SRO triggered elasticity. As can be seen, after the second 50, the service running on slice 2 (Dojot)

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 35

started to use a high percentage of CPU without affecting the CPU usage of slice 1 (Touristic), showing
that the isolation works among slices.

Figure 16. CPU Isolation.

The step 6 perform the elasticity. Figure 17 presents the results for the horizontal elasticity upgrade,
which means adding a new slice part to the slice. The time reported in this graph includes the call to
the slice builder to find the best option to place the new slice part and deploy it, two calls to IMA for
updating monitoring and management and two more calls to IMA to redeploy and monitor the service.

Figure 17. Average elasticity response time (KPI1).

During the slice execution, the IMA is performing the monitoring, thus, Figure 18 shows the number of
metrics that are collected from each Slice every 1 minute. In this case, each Slice has different amounts
of resources (Virtual Machines) to be monitored, so the number of metrics collected is different
between them. It can be noted that the metrics grow linearly, and the distance between the number
of metrics per Slice increases as well, although this difference may vary as the features for each Slice
change, this is a characteristic of the IMA database.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 36

Figure 18. Monitoring-data availability (KPI 7).

In order to showcase the VIM on-demand concept, Figure 19 presents the average slice provisioning
time, focusing on the VIMs deployment time. As highlighted in the figure, the Dojot slice uses only one
type of VIM while the Touristic slice uses 2 VIM types. The difference in the VIMs deployment time for
the slices is due to the different number of VMs used by each slice, i.e., the Dojot slice instantiates
more VMs per slice-part than the Tourist slice. The VIM deployment time is also influenced by the
complexity of the VIM.

Figure 19. Average slice provisioning time (only VIMs).

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 37

 Marketplace (MARK)
This demonstration requests multiple slice allocations using one marketplace hosted by UOM and the
Resources Providers from the FED4FIRE as presented in Figure 20.

Figure 20. Instantiation of MARK on the experimental infrastructure.

 Objectives
The main objective of this demo is to demonstrate that the marketplace concept introduced in NECOS
as a dynamic resource discovery mechanism can cope with slices of significant size and multiple
geographically distributed resource providers. We assume multiple slice requests and demonstrate the
behavior of the marketplace components, the involved workflows and the relevant resource discovery
performance.

In order to obtain real world data, namely the status of resources, we use 6 FED4FIRE testbeds
(http://www.fed4fire.eu/testbeds). We developed a (Python) Translator component that is
responsible to directly communicate with the corresponding test-bed control interface (e.g., jFed CLI),
and to translate the response message into a uniform format. In practice, we maintain a local
representation of the resources in JSON format from the following open-access test-beds: Virtual Wall
1, Virtual Wall 2, Cloudlab Utah, Grid5000, Cloudlab Wisconsin, and w-iLab2. This treatment of the
resources' features is critical because FED4FIRE represents their resources through Resource
Specifications (called RSPECs), but not in a uniform manner throughout the test-beds, e.g., the
resources may have incomplete details or present different attributes.

FED4FIRE testbeds are organised in clusters of nodes, where nodes in a cluster are machines of
identical configuration. Each node in a cluster is associated with a cost and in all experiments, we
assume that one Virtual Deployment Unit (VDU) service is allocated to a single cluster, thus that cluster
should “cover” the VDU Extended Platform Awareness (EPA) attributes.

We place the Slice Agents in Fed4Fire testbeds. To facilitate the experimentation process, we reserved
three hosts in a subset of the aforementioned testbeds, and allocated our agents on these three hosts.
The allocation is the following:

http://www.fed4fire.eu/testbeds

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 38

● Virtual Wall 1 (Europe): 4 DC Agents responsible for resource discovery of all the European
Testbeds and one WAN Agent;

● Virtual Wall 2 (Europe): 6 DC Agents with “semi-artificial” resource data, and one WAN Agent;
● Cloudlab Utah (USA): 2 DC Agents responsible for resource discovery of all the USA Testbeds

and one WAN Agent.

Each DC Agent is responsible for a testbed, communicating with the latter through the translator. Each
Slice Agent has a different cost for the hosts it offers. Since FED4FIRE is an open platform, this cost was
generated using random values. Since the time required by the Slice Agents to report back testbeds
availability information is far greater than the actual time required to deploy them, we consider that
the allocation of the Slice Agents in different testbeds would not significantly change our results. In
order to further investigate further the proposed approach, we have generated “semi-artificial” data
regarding resource providers, that are variations in terms of resource availability and host
characteristics based on the real data obtained by the FED4FIRE testbeds. We also included 3 WAN-
Provider Agents that offer connectivity between DC slice parts; in our tested we considered a fully
connected graph between our slices, i.e. all WAN Agents are able to connect to all the testbeds albeit
at a different cost.

The Slice Brokers (that use the RabbitMQ service) are hosted on a server on the UOM premises. We
have generated multiple slice request cases, by varying the number of slice parts, services hosted in
each slice part and their tenant requested geographic constraints. In all cases, we investigated the
number of messages exchanged, the number of slice parts alternatives and the total number of
alternative slice instantiations and their total cost, from which we derived the slice instantiation of the
minimum cost.

Finally, since the testbed deployment is time consuming and in order to further investigate the
scalability of the proposed approach, we report also on single host experiments, that would allow us
to conduct (more easily) an experimental evaluation. This single host experiments are reported in the
corresponding section below. It should be stressed that the implementation tested in the Fed4Fire
Demo and Single Host experiments is identical.

 Workflow
The Slice Broker and Slice Agents prototypes implement fully the NECOS Marketplace functionality. In
particular, the current implementation is based on the workflow depicted in Figure 21 (Deliverable
D5.1).

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 39

Figure 21. Marketplace Resource Discovery Workflow.

● Step 1: The Broker receives the PDT Message from the Slice Builder and extracts from it the
different DC slice parts. Each of such DC slice parts is enriched with the necessary information
regarding its host constraints, obtained by the corresponding service specification that is
included in the PDT Message (please see deliverables D4.2 and D5.2) and is forwarded to the
agents via the RabbitMQ messaging platform, annotated with the corresponding geographic
constraints.

● Step 2: A Slice agent that receives a slice part request message, computes the clusters that can
host DC part requested. Since multiple clusters can host a VDU in a slice part (please see D5.2)
the agent computes its minimum cost answer, based on any allocation constraints regarding
host availability. Finally, this answer is communicated back to the Broker.

● Step 3: After having collected all available DC-Agent answers for all the DC slice parts, the
Broker forms requests addressed to Net-Agents. In order to do so, the Broker extracts
connectivity information from the slice graph described in the PDT message. Thus, for each
net-(slice) part it forms a request annotated with the network details (IP) of the providers at
the ends of each connection. Each such message is sent to all the WAN-Agents.

● Step 4: WAN-Agents report on the availability and the cost of providing the specific network
connection.

● Step 5: After receiving all requests, the Slice Broker combines them into a single SRA message
and sends it to the Builder.

 Results
We demonstrated geographically distributed resource discovery for a slice request, emphasizing on:

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 40

● Scalability: the Marketplace concept can scale to a larger number of providers and in the case
of the Fed4Fire demo we included results that concern 6 real world testbeds and 6 “semi-
artificial” resource providers and in the case of the SingleHost demo we experimented with 20
DC providers. We also demonstrated scalability in terms of the requested slice, i.e., we
reported on resource requests with a large number of slices/resources;

● Heterogeneity: Resource Discovery can cope with a diverse range of server specifications, as
the latter are defined by the different testbeds;

● Cost efficiency: Selection of the minimum cost slice among alternatives, since by having
information regarding all possible slice instantiation annotated with cost allows the builder to
apply any technique, either complete or heuristic in order to decide on the final slice
instantiation;

● Performance: We reported on the total number of messages exchanged, the wall elapsed time
since the builder sent the original request, until the final SRA message was received.

Single Host Experiments

In order to test and validate the Marketplace implementation, we ran a set of experiments on a single
host, i.e., all Marketplace components were running on the same Linux machine. On this experimental
setting, we generated 20 DC providers, with “semi-artificial” data regarding host characteristics and
availability and 3 WAN Providers.

Our experimentation involved requests generated in a random manner, as that is reported in the
corresponding section of D5.2. We have generated multiple requests organised in 5 classes. DC slice
parts were distributed between Europe and America. The 5 classes of requests were characterized by
a triplet (DC, NET, VDUS), i.e.,the number of DC and Net slice parts and the total number of VDUs
allocated in the slice respectively. Thus, in the following the notation (2,1,4) stands for a slice request
with 2 DC parts, 1 Net part and a total of 4 VDUs allocated in the slice.

For each of those requests that were executed, we recorded the wall time elapsed since the builder
sent the original request till it received the SRA answer message from the Broker, as well as the number
of alternative DC/NET slice parts received. For each SRA received message, using brute force search
we computed the number of alternative slice instantiations generated by the SRA message, as in D5.2
as well as the minimum cost slice. However, when the slice request involves a larger number of slice
parts, and since we assumed a fully connected network infrastructure, this number can increase
significantly. Thus, we stopped this computation when there were fifty thousand (50000) alternative
slice instantiations generated and reported on those. Results showing average values from 5 different
requests in each class and are summarised in Table 3.

Table 3. Resource Discovery Marketplace on a Single Host.

Slice
Request

Avg Wall Time (sec)
Alternative

DC Parts
Alternative
Net Parts

Slice Instantiations Avg Cost

(2,1,4) 11.31 11 27 27 3.12

(3,2,6) 16.81 14.2 39.6 320.4 6.68

(4,5,8) 91.40 18.2 256.2 26924.4 17.68

(6,7,24) 605.867 55.4 1755 50000 78.08

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 41

(8,9,32) 763.10 73 2205 50000 103.90

In terms of scalability regarding the number of providers, the implementation managed to successfully
accommodate 20 DC providers with no reported problem. It should be noted that this is not the
maximum number of providers that the marketplace can host, but an indication demonstrating the
capabilities of the implementation. The implementation is also able to handle slices, ranging from 2
DC- and 1 Net- parts to 8 DC- and 9 Net- parts and from 4 to 32 VDUs. Regarding the alternative slice
instantiations that the builder can generate from the received SRA message, these range from a low
value 27 to more than 50000 alternatives.

Regarding heterogeneity, the resource discovery process managed to accommodate providers with a
varying number of resources as well as slice requests with a varying range of host specifications, since
both were generated using random values. For instance, regarding slice requests, EPA attributes for a
service that concern storage range from 2 to 30 GB, RAM from 4 to 16GB, and the number of hosts in
each slice part from 1 to 10 hosts.

In terms of cost efficiency, given that all alternatives in the SRA message carry a cost, i.e., all alternative
DC and Net slice parts, have an associated cost, the builder is free to select the lowest cost slice. In the
current implementation, we select the latter by brute force techniques, which obviously cannot be
used when the number of alternatives grows significantly. However, given that the complete
information exists in the SRA message, any technique can be used to compute the desired slice
instantiation.

Regarding performance, the wall time since the request was sent to the Broker till the SRA message
was received, grows with the size of the slice, i.e., DC and Net slice parts. This is expected, since in the
current implementation the Broker decomposes its slice request into its parts and follows a query-
answer cycle for each. This poses a time penalty, especially in the case of Net-parts, since the number
of these queries depends on the number of alternatives for each DC slice part. For instance, in the set
(8, 9, 32) in Table 3, the average number of alternative Net parts (each received by a message to the
broker from a WAN agent) is 2205, indicating 735 cycles of queries. Efficiently handling this problem
can be an interesting research direction.

Fed4Fire Testbeds Results
Similar experiments were executed in the FED4FIRE testbeds Virtual Wall 1 & 2 and the Cloudlab Utah,
as described in the corresponding section. This set of experiments was conducted in order to (a) verify
that the application can indeed be executed in a distributed environment and (b) discover any
problems that might occur when the DC agents query the real testbeds for up-to-date information on
available resources.

As stated above there were a total of 12 DC agents, i.e., 6 accessing real testbed resource data and 6
“semi-artificial” data and we tested the discovery process in similar queries as in the single host
experiment. Results are summarised in Table 4.

Table 4. Resource Discovery Marketplace on the FED4Fire testbeds.

Slice
Request

Avg Wall Time (sec)
Alternative

DC Parts
Alternative
Net parts

Slice Instantiations Avg Cost

(2,1,4) 24.81 8.6 55 55 5.04

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 42

(3,2,6) 53.93 13.6 125 828.2 10.49

(4,5,8) 70.57 15 162.6 3506.6 13.94

(6,7,24) 161.01 26.3 381 50000 49.92

(8,9,32) 289.00 36.3 518 50000 63.41

Regarding point (a), since the RabbitMQ message passing platform was used as the marketplace
implementation, no problems were raised when running the software on a distributed set of machines.
Regarding point (b), we can confirm that the python translator component to the Fed4Fire testbeds
operated without any problems and that the execution behaviour of the marketplace was similar to
that of the single host experiments, i.e., the execution time increases as the number of alternative slice
parts increases since there are more query cycles. Overall, we can safely conclude that the
implemented functionality is not affected by distributing components in geographically remote hosts.

 Experiments with Large-scale Lightweight Service Slices (ELSA)
This demonstration is composed by one slice provider hosted by UFPA, the Tenant to make the
requests hosted by UFRN, and the resource providers hosted at UCL, as presented in Figure 22.

Figure 22. Instantiation of ELSA on the experimental infrastructure.

 Objectives
The idea of this demo is to show the deployment of end-to-end Slices that will be utilised by a Tenant
in order to host services consisting of a very large number of lightweight elements (i.e., Virtual Network
Functions (VNFs) and vLinks) deployed at the Edge of the infrastructure. We will demonstrate how the
Tenant is able to reuse their existing software components by attaching them to the allocated end-to-
end slice in a completely transparent way. The description of the desired end-to-end Slice is provided
as YAML input by a Slice Activator component in the Tenant domain to a software component that

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 43

implements some of the functionalities of both the NECOS Slice Builder and the Slice Resource
Orchestrator.

The descriptor will include information (i.e., type of VIM, size, etc.) about the slice parts to be created,
the links between the slice parts and the monitoring parameters (KPIs) to be collected from each of
them. In this demonstration, the marketplace-related workflows will not be considered, and the YAML
descriptor provided to the Slice Builder will contain a predefined set of entry-points of the Slice
Controllers to be contacted in the Resource Providers.

The end-to-end Slice specified via the above descriptor will automatically be built on a Slice Provider
hosted at UFPA. At the UCL premises, 12 of the available 14 interconnected physical servers will be
hosting different instances of the DC Slice Controller, in order to emulate different NECOS Resource
Providers. The created DC slice parts will be based on the on-demand instantiation of the Very
Lightweight Network & Service Platform (VLSP) VIM, which will support the creation of simple
lightweight service topologies across the different slice parts of an end-to-end Slice (mainly simple
video streaming services).

In order to orchestrate the deployment of the above mentioned large-scale services on an end-to-end
Slice, an instance of the open source (5GEx) ESCAPE 4 Orchestrator will be configured to use the
resources of that end-to-end Slice as substrate for embedding the required service elements (i.e., VNFs
and virtual Links). This will happen transparently as the Tenant will attach their existing service
orchestrator (ESCAPE) to the newly created slices.

Finally, as soon as the end-to-end Slices will be up and running, the NECOS IMA will start collecting
relevant KPIs related to it. The implementation of the DC Slice Controller deployed at the UCL Resource
Provider is based on the instantiation of bare-metal slices. As such, the above collected measurements
related to the KPI-9 (Physical Resource Utilization) will highlight how the execution of the large-scale
services deployed on one of the slices will not affect the physical resources of the other slices in the
same Resource Provider.

 Workflow
The Experiment Controller component implementing some of the functionalities expected for the
NECOS Builder and SRO architectural components will ensure large-scale system operations while the
slices are created, operated and monitored.

4 https://github.com/5GExchange/escape

https://github.com/5GExchange/escape

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 44

Figure 23. ELSA workflow.

More specifically the demo shows the following different steps (see Figure 23):

● Step 1: The YAML end-to-end Slice Specification (according to the NECOS information model)
is provided by the Slice / Service Activator component in the Tenant domain to the software
module implementing the required Slice Builder functions, in order to start the instantiation
of a new end-to-end slice;

● Step 2: The above Slice Builder module interacts with different DC Slice Controllers instances
that are already deployed in the testbed (via the Slice Instantiation Interface), in order to
request the creation of different DC slice parts, each based on an on-demand instance of the
VLSP VIM;

● Step 3: The information about the different allocated DC slice parts is returned back from the
Slice Builder to the component implementing the functions of the Slice Resource Orchestrator.
The latter will take care of interconnecting the allocated slice parts via creating an emulated
tunnelling that will be based on the interaction of custom instantiated VLSP edge routers;

● Step 4: Resource Adapters attached to the allocated VIM endpoints are dynamically created
and the handlers to the adapters are provided back to the Slice Resource Orchestrator;

● Step 5: Monitoring Adapters are requested to the IMA according to the allocated type of VIM
and Monitoring Subsystem that were deployed in each slice part in order to gather monitoring
data in a uniform way;

● Step 6: An instance of the open source ESCAPE service orchestrator is attached to the newly
deployed end-to-end Slice and the Service Activator will receive a handle to the northbound
interface of that Service Orchestrator instance. This will be utilised to request the ‘embedding’
of a large service request (in terms of number of involved service virtual elements) on the
previously created end-to-end slice, which will act as the resource substrate. The orchestrator
will also act as Service Orchestrator Adapter as service requests will be translated in a format
supported by the Slice Provider;

● Step 7: IMA collects and aggregates data (via an augmented Data Aggregator) from the
different slice parts in order to generate KPIs related to the end-to-end Slice;

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 45

● Step 8: measurements related to the KPI-9 collected from IMA in the previous step that are
related to (at least) two end-to-end Slice in the UCL Resource Provider will be considered. The
bare-metal slices built by the DC Slice Controllers will guarantee resources isolation at the
physical layer. As such, deploying a large-scale service instance on one of the slices, will not
affect the utilization of the physical resources of the other ones.

 Results
We demonstrated how NECOS is able to provide a Tenant with the abstract concept of end-to-end
Slice, i.e., a fully manageable bundle of resources that can be requested, allocated and then
transparently used by a Tenant. The latter was eventually able to attach a newly created slice to their
existing systems (such as Service Orchestrators, etc.) in order to perform the deployment of specific
services on the end-to-end Slice resource substrate (this is related to the KPI Slice Provisioning). The
scalable embedding of lightweight virtual service functions could be performed by a Tenant on the
end-to-end Slices in the above described emulation environment, where the scale of the instantiated
service elements ranges from hundreds to ~2K VLSP virtual router elements (this is related to the KPI
Management). The time related to the service instantiation in this particular demonstration (i.e.,
deployment of lightweight VLSP services embedded via the ESCAPE service orchestrator) is reported
in Figure 24.

Figure 24. Service instantiation (embedding and deployment).

The NECOS architecture and system allowed using heterogeneous types of resources coming from
different segments of the infrastructure (e.g., from resources constrained edge domains) that were
bundled as a single object and used for the deployment (embedding) of the desired service
components. End-to-end Slices could be provisioned via interconnecting slice parts coming from
multiple Resource Providers (edge domains), which were emulated by partitioning the Data Center
testbed available at UCL. Each slice part hosted a separate instance of the lightweight VLSP VIM (this
is related to the KPIs VIM-independence and Slice Provisioning). Figure 26 highlights the time required
for the allocation of end-to-end Slices in this particular demonstration. The graph shows the number
of physical resources involved in the creation of different Slices. Please note that sizes on the x-axis
from 1 to 3 refer to an increasing number of slice parts (i.e., 1 to 3). Values greater than 3 are all based
on 3 involved slice parts. The parallelism in the required operations allowed the creation of the
different parts and abstractions in a way that was not related to the number of involved physical
servers (however this is related to the particular implementation of the DC Slice controller and the
VLSP VIM). On the other hand, due to the specific way the interconnection between the slice parts was
performed, it required the propagation of the information about the edge points of a slice parts to the
adjacent ones. As this had to be performed sequentially, the required time for its execution grew
linearly with the number of slice parts as reported in Figure 25.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 46

Figure 25. Creation of end-to-end Slices.

This demonstration also showed the process of gathering monitoring data for (i) the service elements,
(ii) the hosts, (iii) the slice parts, and (iv) the whole slice via IMA (this is related to the KPI Monitoring).
The measurements collected by the IMA Aggregators from at least two different end-to-end slices in
the same Resource Provider, showed that the physical resources utilisation (i.e., the average
percentage of CPU utilisation) measured on the physical resources of an end-to-end slice running a
service grows according to the load, whereas the same type of KPI in the other slices (where no services
are running at the same time) does not change. This is shown in Figure 26 and demonstrates the better
level of isolation introduced by our implemented slicing approach, especially when the slices are
created directly on the bare-metal. The average CPU utilization (percentage) of the slice running the
service (slice1 in green) was affected by the load introduced by the service execution, whereas the
other slice in the same Resource Provider (slice2 in yellow) was not impacted by that as it was using a
separate set of physical resources.

Figure 26. CPU Utilization on two different bare-metal Slices.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 47

 Machine-learning based orchestration of slices (MLO)
In this demonstration, the Tenant hosted at CPqD requests multiple slice allocations to the Slice
Provider hosted by UFU that uses the Resources Providers hosted in the same institution as presented
in Figure 27.

Figure 27. Instantiation of MLO on the experimental infrastructure.

 Objectives

The objective of this demo is to show how machine learning algorithms can be useful for the
orchestration of slices. Two modules of NECOS Architecture, IMA and SRO, were specifically extended
to enable intelligent monitoring and intelligent elasticity orchestration, respectively.

Given the multitude of elements composing slices’ infrastructure and the presence of multiple domains
in which slice parts are spread to create an end-to-end slice, it is natural to expect considerable
overhead to monitor and to move such data from the IMA towards the SRO. Considering such
characteristics that can pose a scalability problem, this demo provides intelligence to IMA, enabling it
to perform automatic selection of features to be monitored. Such selection is performed on a per-slice
basis, requiring that the SRO provides a target KPI to IMA, so it can select a set of features that better
describes the behavior of such KPI. We refer to the entire set of infrastructure metrics as full feature
set, i.e., the set of metrics regarding the entire infrastructure composing the slice. We refer to the
result of the selection mechanism based on machine learning as selected feature set, i.e., a set of K
essential metrics selected among all infrastructure metrics composing the slices.

The IMA, in this demo, performs the collection of all infrastructure metrics (full feature set) in longer
intervals (less frequently) when compared to the frequency in which the selected feature set is
collected. It is expected that along the lifetime of a given slice, the target KPI can evolve and, as a
consequence, the selected feature set can probably present a different composition. This effect is
justified, for example, by sazonalities related to the usage of the slice. By collecting the full feature set
in less frequent intervals, the IMA is capable of automatically updating the selected feature set.

IMA, after the selection of the features, provides the monitoring data to the SRO, according to the time
interval specified by IMA. As a result, the intelligent version of the IMA presented in this demo reduces
the volume of data being pushed towards the SRO (the selected feature set), not only improving
monitoring scalability, but also removing noisy data from the monitoring information. Such noise

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 48

removal has the potential to improve accuracy in the operations performed by the SRO during slices
orchestration.

The intelligent SRO implemented in this demo consumes the selected feature set provided by the
intelligent IMA with the goal of supporting elasticity decisions. To do it, the intelligent SRO performs
four steps: 1) KPI Estimation; 2) SLA Prediction; 3) Slice Resources Optimization; and 4) Enforcement
of Slice Modifications.

The SLA for a given slice, in this demo, is associated to a KPI. Such KPI can be related to the slice
infrastructure, considering metrics related to, for example, CPU, memory, network traffic, and others.
The most interesting aspect of this demo is that, differently from the other SRO implementation, such
KPI does not have to be generic and can also be directly related to a Service KPI. As such in the demo,
we actually used Read and Write Response Times of a Cassandra-DHT running as the Service deployed
in a given slice. The SRO estimates the current state of such Service KPIs as a way of verifying whether
the slice SLA is being violated or not. An example SLA that might be adopted during the demo is to
target Read Response Times below 50 milliseconds for verifying the Slice SLA conformance. Besides
continuous values, the same solution presented in this demo can be applied for services with discrete
classes, like videos in high or low resolution.

The first step taken by the SRO, named as KPI Estimation, consumes the monitoring data provided by
the intelligent IMA, feeding it into a supervised machine learning model (regressor/classifier), which is
trained to estimate the current state of the target Service KPI. Basically, it is done in order to associate
the slice’s infrastructure measurements fluctuations with the chosen Service KPI.

By having the history of estimations, the intelligent SRO is capable of performing the second step,
named SLA Prediction, which foresees what the state of the SLA will be at a given point in the future.
This enables the SRO to proactively tune the slice, preparing it for the condition seen in the future.

The third step, perhaps the most complex out of the four steps listed, has the duty of designing the
new slice infrastructure arrangement, capable of handling the condition foreseen by the second step
taken by our intelligent SRO. This third step, by itself, opens several research possibilities, including
root cause analysis, resource optimization, and others of even higher complexity.

In this demo, we consider the existence of a set of slice flavours. A tenant, when requesting a slice to
NECOS – similarly to what is done nowadays when requesting a virtual machine at Amazon – informs
the flavour which will be applied to its own slice and, additionally, a set of flavours allowed to
accommodate possible SLA fluctuations. The demo detects in step number two whether the SLA is
going to be violated or if it is going to be under conformance with a lighter KPI condition, and step
number three optimizes the slice flavour, among a set of flavours, which is capable of keeping the SLA
under conformance and, at the same time, with moderate resources consumption, i.e., the service will
not face SLA violation due to lack of resources, but it will not be running with a set of resources that is
not really necessary, given the current service condition estimated by the SRO, as well.

The fourth step does not restrict itself to adjustments in terms of slice infrastructure, already specified
in NECOS Architecture, it also encompasses intelligent adaptations. Besides the communication among
SRO and DC/WAN Slice Controllers, the intelligent SRO: 1) requests to IMA the update in the
composition of the feature set being monitored, ideal to the new slice flavour; 2) updates the trained
model being used in step number one, which estimates the Service KPI; and 3) updates the predictive

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 49

models used in step number two. In short, step number four performs an overall, infrastructure and
intelligence, adjustment in this demo.

 Workflow
The demo departs from an established end-to-end slice with a certain service running inside it. As a
first step in the demo, the SRO provides IMA with the KPI that it wants to be estimated. As mentioned
before, the demo showcases a Cassandra-DHT type of service. It also has a second application, which
is a Video-on-demand Service based on Dash Price Chart (DASH).

As seen in Figure 28, upon receiving the KPI from SRO (step 1), the intelligent IMA recovers (step 2)
from the infrastructure providers the full feature set (i.e., the measurements related to the
infrastructure) already monitored by the VIM/WIM. Figure 28 suggests the usage of local databases at
infrastructure providers to store monitoring data, but depending on the monitoring technology within
infrastructure providers, IMA might assume the responsibility of storing it.

After step 3, with all monitoring data at hand (full feature set), the IMA performs feature selection
using machine learning. It selects the features to monitor using the Service KPI as target metric, i.e., it
defines the composition of the selected feature set with K essential metrics that better represent the
given Service KPI and executes some tasks in parallel as a consequence of step 4. The set of K features
and the respective monitoring history is returned to SRO (step 5), so it can train its KPI Estimation
module, at the same time that IMA adjusts the monitoring tools deployed within infrastructure
providers. As mentioned before, the intelligent IMA deploys two monitoring instances, one responsible
for collecting the full feature set (step 6) at longer time intervals (mainly used to support feature
selection) and a second instance responsible for delivering live monitoring data corresponding to the
selected feature set (step 7). The definition of both collecting intervals can be explicitly specified by
the tenant or by analysing learning curves.

Figure 28 also suggests a direct communication from VIM/WIM Monitoring module towards the SRO
to deliver live monitoring data (step 8). This demo implementation uses a Pub/Sub system, based on
Apache Kafka, which removes several push cycles from the overall monitoring system. Basically, we
assume that required adaptations in the monitored data is performed locally at the infrastructure
providers, for example, by deploying the functionalities of IMA in a distributed manner among the
slice parts composing slices. Such design contributes to the deployment of real time orchestration of
slices.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 50

Figure 28. Intelligent IMA workflow for feature selection.

Figure 29 updates the elasticity workflow presented in Deliverable D5.1 of NECOS, presenting the
machine learning extensions as green steps. This figure depicts the four steps SRO performs in this
demo to support elasticity. This figure also accommodates the proposed communication directly from
the VIM/WIM monitoring systems towards the KPI Estimation module of the SRO, as mentioned above.

Figure 29. Intelligent SRO workflow for elasticity.

It is important to highlight the possible outcomes of step 3, the decision can indicate the need for
vertical and/or horizontal elasticity, both including upgrade and/or downgrade of infrastructure
resources. But, another important outcome of step 3, is to keep the slice in its current form, i.e.,
returning the loop to KPI Estimation (step 1) of the intelligent SRO. This latter case represents the
scenario in which the optimization of slice flavours indicates that current slice arrangement is the best
among the available options, for example.

 Results
The key aspect of this demo related to intelligent monitoring and orchestration to provide elasticity.
In this context, the demo provided an environment that is capable of evaluating total elasticity
execution time, from the moment when elasticity was defined as necessary, up to the moment when
it is completely executed. The demo also allowed to measure the effectiveness of honouring the SLA

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 51

agreed between the Tenant and NECOS. Finally, given the machine learning nature of the demo, it was
also possible to evaluate the accuracy of the proposed solution. For example, measuring how often
the proposed mechanism mistakenly changes the infrastructure of slices. Figure 30 is useful to evaluate
how close to the Observed Response Time is the Estimated Response Time of our neural network. It is
also important to mention that the estimated values are a forecast of thirty seconds in the future. The
dynamicity of the response times is due to a load generator that controls the instantiation of end users
consuming the service offered by the DHT system. As seen from Figure 30, the set of estimated
response times closely approximates the set of observed response times, bringing accuracy to the
elasticity forecasts.

Figure 30. Estimated Response Time versus Observed Response Time as a function of the number of

end users consuming the DHT service.

Figure 31 illustrates a vertical elasticity upgrade triggered by our machine-learning-based orchestrator.
The SLA is defined as response times below 180 ms, so whenever the orchestrator forecasts that such
an SLA will be violated in the next 30 seconds, the elasticity process is triggered to proactively avoid
the violations. As can be seen in Figure 31, a few seconds after 18:18:00 the orchestrator foresees an
SLA violation (blue star) and triggers elasticity. Since the elasticity is proactively triggered and the slice
is modified to the slice flavour that fixes the foreseen violations, the process takes just a few seconds
to be concluded. It is also possible given the fact it is a vertical elasticity and no new slice parts are
included in the end-to-end slice and no new VIM/WIM needs to be instantiated, a case in which the
process would last longer. After the vertical elasticity, it is possible to check that the observed response
times are maintained under the specified SLA, even with the number of end users growing, i.e., the
pressure over the service is increasing.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 52

Figure 31. Estimated Response Time versus Observed Response Time as a function of the number of

end users consuming the DHT service.

Other aspects closely related to monitoring that this demo allows to evaluate include the time required
to perform feature selection, per slice and per Service KPI. It also opens the opportunity to investigate
the impact in terms of accuracy of feature selection and SRO estimations, versus the time interval in
which the entire (full) infrastructure metrics are monitored. Figure 32 details such trade-offs,
illustrating how the frequency interval for the collection of the entire set of infrastructure metrics can
influence in the quality of the estimations by the orchestrator, and also the number K of metrics
selected by the IMA module. From Figure 32 it is possible to check that at around 15 metrics (for the
scenario being considered in the DHT service) the accuracy of the machine learning model stabilizes.
As a consequence of this evaluation, in the demo we consider K=15. It is also possible to check that the
longer the collection interval, the worse is the accuracy of the machine learning model and this is easily
explained by the fact that it “reduces the resolution of the picture” the monitoring system takes from
the infrastructure composing the slice. Such effect can be controlled by the fact that online learning
can be used to update the machine learning model along the lifetime of the slice, using the live
monitoring data to not only forecast thirty seconds in the future, but also improving the trained model.

Figure 32. Accuracy of the machine-learning model (measured as NMAE) as a function of the
frequency interval for the collection of the full feature set and the number K of features selected.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 53

As a consequence of the feature selection performed by the intelligent IMA module, this demo is also
capable of showing the improvement regarding the movement of monitoring data from the
Infrastructure (i.e., from the VIM/WIM Monitoring via IMA) towards the SRO, i.e., it is possible to
evaluate the gains in terms of overhead reduction that intelligent feature selection assigns to NECOS.
Figure 33 presents the volume of data transferred from the IMA towards the SRO during the period of
one hour, for both the full feature set approach and the selected feature set approach. As seen in
Figure 33, the volume of data transferred for K=15 increases much slower than the amount of data
transferred for the full feature set, such behaviour assigns better scalability for NECOS since it monitors
in a per slice basis.

Figure 33. Comparison of the volume of data transferred by the monitoring module (IMA) towards
the orchestrator (SRO) while monitoring the full feature set once a second versus the selected

feature set once a second for K=15 in the slice with the DHT Service.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 54

 Wireless Slicing Services (WISE)
In this demonstration, multiple slice allocations are requested via one Slice Provider hosted by UFPA
and the Resources Providers participating at the UFRN, as depicted in Figure 34.

Figure 34. Instantiation of WISE on the experimental infrastructure.

1.1.1 Objectives
The Wireless Slicing sErvices (WISE) demo shows the NECOS LSDC capabilities in expanding the cloud-
network slinging concept towards wireless network domains. In general terms, the WISE [Maxweel,
2019] solution outperforms the state-of-the-art in WiFi-shared access by deploying an end-to-end
slice‐defined approach, enabling WLAN networks tailored to serve the demands of specific scenarios
and applications needs. Moreover, WISE allows carriers to be capable of both managing and controlling
home-premised off-the-shelf WiFi routers at the runtime by harnessing a fully softwarized approach.
The WISE solution addresses the gaps of existing WiFi sharing tools, such as the widely used FON5
global WiFi network, which only allows traffic isolation and differentiated services at the CPE premises,
as well as only permits system reconfigurations on-site (fully customer-centric).

Contrary to the FON WiFi sharing service fully deployed within WiFi router premises, WISE turns off-
the-shelf WiFi routers into a simple CPE, focused on provisioning WiFi access to mobile devices through
different virtual networks. The WISE WiFi sharing control services run out of the CPE, namely in virtual
CPE applications running at edge node premises. Thus, all incoming traffic that belongs to different
virtual WiFi networks must be subjected to respective virtual network functions before going forward.
In light to achieve this, the legacy WISE solution relies on external technologies to provide all the
necessary resources. The idea behind harnessing the NECOS hub of services (i.e., the NECOSization of
the WISE approach), stands to rely upon the LSDC approach for orchestrating and managing all
necessary resources so that the WISE solution can run as a service. Thus, NECOS foresees to provide
WISE-enabled WiFi sharing systems with capabilities for end-to-end service-oriented networking
services, including full isolation and auto-scaling, as well as customization and control at runtime. The
goal of the WISE demo is to assess the LSDC approach performance in a lab-premised testbed deployed

5 http://fon.com/

http://fon.com/

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 55

in the UFRN's REGINA-Lab premises, which hosts all NECOS components in the core DC. Figure 35
depicts the testbed configuration of the WISE demo.

Figure 35. Testbed configuration of the WISE demo.

The WISE demo considers a scenario in which carriers exploit public WiFi coverage coming from
residential hotspots to support 5G's ultra-dense networking. For instance, distinct carriers may want
to purchase WISE-enabled WiFi sharing systems to complement their cellular networks with
broadband wireless access featuring end-to-end isolation, customization and independent service
provisioning. Such a WiFi-assisted network densification proceeds in two stages: i) by harnessing the
NECOS LSDC approach to orchestrate the necessary cloud-network slice resources all the way from the
core DC to the WiFi CPE. More specifically, the NECOS LSDC approach takes slicing template
specifications for building (and decommissioning afterwards) a pair of containers at both edge DCs and
the core DC in a per virtual WiFi granularity, each pair hosting same chaining WISE VNFs; one container
in the edge DC to host the WISE Agent application; and, one container in the core DC to run the WISE
Controller. In the end, the NECOS LSDC approach builds network slices connecting all the cloud slice
parts and the WiFi virtual networks.

The WISE Controller relies on particular VIM and WIM that NECOS provides to the carrier in order to
enable the dynamical control and management of all the computing, storage, and network resources
within the entire cloud-network slicing topology; ii) by applying end-to-end cloud network slice
definitions on top of the WISE-enabled Wi-Fi sharing technology, with the aim of offering multi tenancy
and multi service support for a wide range of services.

On the basis of the Wi-Fi slicing concept, typical WiFi WLAN-sharing services implement virtualization
to accommodate two virtual networks within the common Wi-Fi spectrum for shared connectivity.
Similarly, NECOS maps the description of the desired service capabilities (provided as YAML file) into
two end-to-end cloud-network slices: (i) a “public” one, devoted to community Internet access, and
(ii) a “private” one, for particular devices attached to the Wi-Fi owner’s network. Each demanded cloud
network slice comprises a set of dc and network slice parts as follows:

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 56

● A public and a private WiFi slice parts, consisting of virtual access points (vAPs) running on top
of an OpenWRT-empowered off-the-shelf CPE;

● Eight (8) Edge dc slice parts consisting of different NFV service chaining instances running
locally at mini dc equipment premises (a laptop), in the form of vCPE applications;

● Eight (8) WAN network slice parts consisting of the required virtual networking infrastructure
(e.g., nodes, links, interfaces, etc.) for proper edge-to-core cloud slicing connectivity;

● Eight (8) core dc slice parts consisting of the required computing and storage resources to
accommodate additional services such as a general-purpose software application.

Two off-the-shelf Wi-Fi router TP-LINK TL-WR1043ND v3 (CPU of 720 MHz, and RAM of 64 MB), running
the OpenWRT v18.069 and the WAN Slice Controller implementation, is adopted to provision the Wi-
Fi-sharing technology. A laptop DELL VOSTRO 5480 (Core I7-5500U, RAM 8GB, HDD 500GB)
implements the edge DC, whilst a two clustering rack servers PowerEdge R7425 (2AMD 32-core EPYC
processors, 64GB DIMM DDR4 RAM, 4 HDD 2TB, and 4 Gb Ethernet network cards) compose the core
cloud. In short, the WAN Slice Controller creates vAPs that can run on a physical router to provide
service-oriented WLANs for specific applications. An SDN infrastructure featuring 6 OpenFlow-enabled
Mikrotik 951G-2HnD (CPU of 600 MHz, and RAM of 128 MB) meshed switch nodes provide wired
connectivity between the edge and core DCs.

 Workflow

Figure 36. WISE workflow.

As shown in Figure 36, the demo has seven steps which are detailed below.

● Step 1: Slice Activator receive a YAML file with slice and service description (based on NECOS
information model) and requests an end-to-end cloud-network slice deployment to slice
builder;

● Step 2: Slice Builder interacts with already deployed DC/WAN controllers in order to create
different slice parts (including WiFi, network and edge/core DC slice parts);

● Step 3: DC/WAN deploys VIM/WIM on demand in the edge DC, network and core DC domains;
● Step 4: WAN Controller communicates with WISE edge DC controller to deploy two new slices,

one for the public and another for private purposes, upon the network domain;
● Step 5: WAN Controller associates the deployed WIM with the public and private slice parts;

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 57

● Step 6: Slice Builder informs SRO about Slice creation process;
● Step 7: SRO deploy slice services in each VIM/WIM based on slice description from Service

Activator. After that, SRO can manage cloud, network and WiFi resources in the edge DC, wan
and core DC.

 Results
The mains KPIs addressed in this demo are both the average slice provisioning time (KPI 4) in seconds
(during the creation and decommission workflows) and the monitoring-data availability (KPI 7), in
terms of the number of control-plane signalling exchanges, to estimate the networking cost impact.

In order to show the results concerning the KPIs 4, we collect the times that the LSDC approach devotes
to provisioning all the cloud-network slices during the course of the testbed experiments. Figure 37
sketches the total provisioning times to create, config and decommission all cloud network slices.

Figure 37. Average provisioning time to build and decommission 8 cloud-network slices in the

testbed experiments.

The numerical analysis of the results obtained reveals that the NECOS LSDC approach spends on
average 57.20 seconds devoted to VIM-centric operations (cloud network slice part), 25.26 seconds to
carry out WIM-centric operations (network slice part), and 60.4 seconds to boot up the service
delivery. Thus, a cloud-network slice instance creation raises a total provisioning time of 2.38 minutes
on average (a peak time of 2.73 minutes) in the lab-premised testbed experiments. In regards of the
decommission time, the NECOS LSDC approach takes slightly less than one minute (50.63 seconds) on
average, raising a peak of 1.05 minutes in the worst case.

In order to address the KPI 7 analysis, we collect all the signaling load (in bits) entailing cloud-network
slice creation and decommissioning workflows during the course of the testbed experiments. This
analysis play a key role by the importance in estimating the cost that the NECOS LSDC approach impacts
in the whole system, in response to carrying out the cloud-network slice creation and decommissioning
workflows. The Figure 39 depicts the KPI 7 results.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 58

Figure 38. Total signalling load impact to create and decommission cloud-network slice instances

during the course of the testbed experiments.

On observing the results of Figure 38, the testbed reveals a slight difference in the total resource
enforcement signaling load impacting the experiments. The numerical analysis exhibits that the NECOS
LSDC approach requires a signaling load of 37,363 bits on average to create all end-to-end cloud-
network slice instances all the way from the core DC to the WiFi CPE. During the creation of the first
cloud-network slice, the justification for the best resource enforcement signaling latency performance
(35,640 bits) comes from the higher amount of available resources for the NECOS components to
operate. Hence, the total latency coming from the resource enforcement signaling load needed to
create the first cloud-network slice is of 22.24 seconds. From the first cloud-network slice on, the total
resource enforcement signaling load latency exponentially increases, achieving a maximum of 33.85
seconds to create the cloud-network slice 8, since resources are progressively exhausted.

For what concerns the cloud-network slice decommissioning, the total signaling load behaves in the
opposite way, since resources return to available condition progressively with the accumulative
resource releasing. Thus, cloud-network slice 8 decommissioning performs better than the rest of the
cloud-network slices, by exchanging a total of 17,299 bits in the whole system. On the other hand, the
cloud-network slice 1 shows worst decommissioning operation performance through exchanging a
total of 18,691 bits (7.45% of additional signaling load). On average, the LSDC approach spends a 25.47
seconds on average for decommissioning a cloud-network slice instance in our lab-premised testbed,
from 27.03 seconds in the first cloud-network slice instance to 23.51 seconds in the very last one.

It is worth highlighting that the cloud-network slice booting time does not include WISE service
deployment. Aside from that, the WISE demo adopts the same VIM and WIM technologies already
running from the beginning of the tests for all of the cloud-network slice instances. Finally, WISE
achieves a significant reduction in provisioning times when compared with the MUSTS demo for
instance for the reason of not needing to deploy VIM and WIM instances as on-demand services.

As a future remark, we will carry out new experiments considering WISE service deployment, in
addition to cloud-network slicing creation and decommission workflows, in different scenarios. Thus,
we expect to get new insights by observing the incidence of more realistic provisioning times and costs.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 59

 Acceptance Verification
As pointed out in subsection 2.3, the NECOS acceptance requires that the tests for all prioritized
features are complete, i.e., the solution process is receiving entries correctly, processing as specified
and returning correct outputs. These results are summarized in Table 5, for each feature a specific test
was conducted in one or more demonstrations and the results using the KPIs were listed as verification
artefacts.

Table 5. Acceptance verification.

Features KPI Test Verification Artefacts

Slice Provisioning
KPI 4 - Average slice
provisioning time (in
seconds)

Execute the Create Slice
Workflow.

Figure 14 from demo
MUSTS and Figure 37 from
demo WISE

Isolation
KPI15 - Slice isolation
index

To overload the resources of a
given slice without affecting the
resources of the other slice.

Figure 16 from demo
MUSTS

Management
KPI3 - Average service
provisioning time (in
seconds)

To deploy the service from the
tenant.

Figure 15 from demo
MUSTS and Figure 24 from
demo ELSA

Elasticity
KPI1 - Average elasticity
response time (in
seconds)

Measure the time between the
trigger for the elasticity and the
time to accomplish it.

Figure 17 from demo
MUSTS and Figure 31 from
demo MLO

Scalability

KPI 4 - Average slice
provisioning time (in
seconds) during the
Resource Discovery
phase.

Perform the Resource Discovery
phase in Create slice workflow,
considering large slices spanning
over multiple providers with
numerous resources.

Table 4 from demo MARK

Monitoring
KPI 7 - Monitoring-data
availability

Show the amount of data from
IMA collected in each slice over
the slice life-time.

Figure 18 from demo
MUSTS, Figure 33 from
demo MLO, and Figure 38
from demo WISE

VIM-independence
KPI 4 - Average slice
provisioning time (in
seconds)

Collect the time spent to deploy
different VIMs in the same Slice.

Figure 19 from demo
MUSTS and Figure 38 from
demo WISE

Bare-metal slice
KPI 9 - Physical Server
Utilization

Collection of the measurements
related to the different (physical)
resources that form the slice
parts. Demonstrating that
overloading one end-to-end Slice
does not affect the other Slices in
the same Resource Provider, as
they use a disjointed set of
physical resources.

Figure 27 from demo ELSA

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 60

 Conclusion
This document described the deployment, tests, and validation processes of the NECOS platform with
the related results. The activities were organized and executed in a way that WP6 acted as an
integration point for the other technical work packages, as shown in Figure 39. The scenarios and
requirements from WP2 were used to create demonstrations, the distributed architecture from WP3
and the model and APIs from WP4 allowed the creation of a geographically distributed testbed to show
the flexibility and power of the NECOS architecture, APIs, and model. Finally, the prototypes from WP5
made possible to test how the LSDC concept could be demonstrated in meaningful scenarios.

Figure 39. WP6 as an integration Work Package.

As presented in Figure 40, the initial seven (7) PoC implementations from D6.1 were used as a base for
the final five (5) demonstrations: MUlti-Slice/Tenant/Service (MUSTS), Marketplace (MARK),
Experiments with Large-scale Lightweight Service Slices (ELSA), Machine-learning based orchestration
of slices (MLO), Wireless Slicing Services (WISE). Altogether, the different NECOS platform instances
featured 2 Slice Providers, 2 Marketplaces, 7 Resource Providers, and integration with FED4FIRE
testbeds uses as Resources Providers, in multi-site deployments, resulting in the first cloud network
slicing embodiments between Europe and Brazil.

Figure 40. NECOS validation overview.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 61

Eight prioritized features were validated during the Create Slice, Elasticity and Decommission
workflows. For each one of these features, at least one KPI was presented in the results demonstration
section, for a total of 6 validated KPIs.

The system tests were performed by each demonstration, allowing us to use the related results as
input for the section describing the Acceptance Verification. The latter summarized the tests and
results regarding the eight NECOS prioritized features in Table 5, where all the 8 prioritized features of
NECOS were validated via the execution of the NECOS workflows, altogether contributing to the overall
validation of the NECOS propositions.

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 62

References

[Bradner 1997] S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels”, RFC 2119,
March 1997.

[H2020 2017] H2020, 2017, Technology readiness levels (TRL), General Annexes from Part 19 -
Commission Decision C(2017)7124 G,
https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2018-2020/annexes/h2020-
wp1820-annex-g-trl_en.pdf

[Sommerville 2011] Sommerville, Ian (2011). Software engineering. Boston: Pearson. ISBN 978-0-13-
705346-9.

[D2.1] Deliverable D2.1: Initial definition of use cases, 2018.

[D3.1] Deliverable D3.1: NECOS System Architecture and Platform Specification. V1, 2018.

[D4.1] Deliverable D4.1: Provisional API and Information Model Specification, 2018.

[D5.1] Deliverable D5.1: Architectural update, Monitoring and Control Polices Frameworks, 2018.

[D5.2] Deliverable D5.2: Intelligent Management and Orchestration, 2019.

[M6.1] Milestone M6.1: Report of Software Tools for Automated Infrastructure Deployment, 2018.

[Mouradian 2018] Mouradian, Carla et al. “A Comprehensive Survey on Fog Computing: State-of-the-
Art and Research Challenges.” IEEE Communications Surveys & Tutorials 20 (2018): 416-464.

[Siaterlis 2013] Siaterlis, C., Garcia, A. P., & Genge, B. (2013). On the use of Emulab testbeds for
scientifically rigorous experiments. IEEE Communications Surveys & Tutorials, 15(2), 929-942.

[Maxweel 2019] Maxweel Carmo, Felipe S. Dantas Silva, Augusto Venâncio Neto, Daniel Corujo, and
Rui Aguiar, "Network-Cloud Slicing Definitions for Wi-Fi Sharing Systems to Enhance 5G Ultra Dense
Network Capabilities", in: Wireless Communications and Mobile Computing, Vol. 2019, Article ID
8015274, 17 pages, doi: 10.1155/2019/8015274

https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2018-2020/annexes/h2020-wp1820-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2018-2020/annexes/h2020-wp1820-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2018-2020/annexes/h2020-wp1820-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2018-2020/annexes/h2020-wp1820-annex-g-trl_en.pdf

D6.2: Complete report on validation and demonstration of the
Integrated Platform

EUB-01-2017 63

Version History

 Version Date Partner Description/Comments

0.1 23/02/2019 UFPA Draft ToC
0.2 06/03/2019 UFG Insertion of subsection 3.3.2 Private Interconne

between Europe and Brazil as content from Mil
MS17

0.3 03/04/2019 All Insertion of the content related to the initial
deployment of the software used in the
islands as content from milestone M18

0.4 22/06/2019 All Insertion of Prioritized features in section 2
1.0 16/09/2019 UFPA Draft version for Internal Revision
1.0.1 26/09/2019 UCL, UPC, UNICAMP Revised Version 1
1.0.2 18/10/2019 All Several contributions
1.1 22/10/2019 UFPA Second version ready for internal review
1.2 28/10/2019 UCL, UPC, UNICAMP Revised Version 2
2.0 29/10/2019 UFPA, UPC Final Version

	Executive Summary
	Scope
	1. Introduction
	1.1. Structure of this document
	1.2. Contribution of this deliverable to the project and relationship with other deliverables

	2. NECOS Platform Validation Plan
	2.1. Prioritization of Requirements
	2.2. NECOS key Performance Indicators
	2.3. Acceptance Plan

	3. Integrated NECOS Platform Testing Environments
	3.1. Prototypes
	3.1.1. The Slice Builder
	Description
	Functional requirements implemented

	3.1.2. Slice Spec Processor
	Description
	Functional requirements implemented

	3.1.3. DC and WAN Slice Controllers
	Description
	Functional requirements implemented

	3.1.4. WAN Slice Controller
	Description
	Functional requirements implemented

	3.1.5. Slice Resource Orchestrator (SRO)
	Description
	Functional requirements implemented

	3.1.6. Slice Database
	Description
	Functional requirements implemented

	3.1.7. Infrastructure & Monitoring Abstraction (IMA)
	Description
	Functional requirements implemented

	3.1.8. Slice Broker and Slice Agent with RabbitMQ
	Description
	Functional requirements implemented

	3.1.9. Slice Broker with HUG
	Description
	Functional requirements implemented

	3.1.10. Slice Agents with HUG
	Description
	Functional requirements implemented

	3.2. The NECOS roles
	3.2.1. Slice Provider
	3.2.2. Resource Provider
	3.2.3. Resource Marketplace

	3.3. Infrastructure for validation
	3.3.1. Islands
	3.3.2. Private Interconnection between Europe and Brazil
	Islands connectivity
	Software
	Issues

	4. Demonstrations and NECOS Validation Results
	4.1. MUlti-Slice/Tenant/Service (MUSTS)
	4.1.1. Objectives
	Touristic Service for End-to-End Slice

	4.1.2. IoT Service
	4.1.3. Workflow
	4.1.4. Results

	4.2. Marketplace (MARK)
	4.2.1. Objectives
	4.2.2. Workflow
	4.2.3. Results
	Single Host Experiments
	Fed4Fire Testbeds Results

	4.3. Experiments with Large-scale Lightweight Service Slices (ELSA)
	4.3.1. Objectives
	4.3.2. Workflow
	4.3.3. Results

	4.4. Machine-learning based orchestration of slices (MLO)
	4.4.1. Objectives
	4.4.2. Workflow
	4.4.3. Results

	4.5. Wireless Slicing Services (WISE)
	1.1.1 Objectives
	4.5.1. Workflow
	4.5.2. Results

	4.6. Acceptance Verification

	5. Conclusion
	References
	Version History

