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Executive Summary 
This document is a report of the work carried out in the context of WP6, with particular focus on task 
6.2 (System & Platform Validation & Demonstration). Firstly, this deliverable presents the deployment, 
test and validation activities in scope of the Novel Enablers for Cloud Slicing (NECOS) platform. 
Secondly, the deliverable describes how the different testbed islands were interconnected in order to 
validate and demonstrate the multi-domain federation model. In order to endorse the NECOS 
validation plan, WP6 activities executed within the second year of the project were focused on (1) 
setting up the network to interconnect the Lightweight Software Defined Cloud (LSDC) islands; (2) 
deploying the network and computing resource description and discovery of LSDC over the federated 
islands; and (3) performing the use case demonstrations.  

Five demonstrations are presented and evaluated: MUlti-Slice/Tenant/Service (MUSTS), Marketplace 
(MARK), Experiments with Large-scale Lightweight Service Slices (ELSA), Machine-Learning based 
Orchestration of slices (MLO), and Wireless Slicing Services (WISE). Altogether, this document presents 
the evidence of the suitability of the NECOS proposition by means of running platforms and 
experimental evaluations.  
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Scope 
This document is the final result of task T6.2: Complete report on validation and demonstration of 
the Integrated Platform NECOS project's WP6. 

In the context of this document, the NECOS software solution is referenced as Lightweight Slice 
Defined Cloud (LSDC) and as NECOS platform interchangeably.  

The term prototype is used as a physical and logical model used to evaluate and test both the slicing 
concept and workflows in network clouds.  

The term demonstration is used as the set of actions and operations put together with the primary 
purpose of showcasing feasibility, performance and method of slicing in networked clouds. 
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 Introduction 
The main objective of this deliverable is to describe the NECOS validation process and presents 
evidence of the correct implementation and execution of NECOS workflows. In D6.1, we described the 
Proofs-of-Concept (PoCs) in order to explore some of the systems related to the NECOS architecture. 
The results of the analysis of these PoCs were used to develop both a revised version of the 
architecture and of the Application Programming Interface (API). Figure 1 provides an overview of the 
relationship between D6.2 and other project deliverables. 

 

Figure 1. Relationship between D6.2 and other project deliverables 

Technology-readiness-level (TRL) [H2020 2017] provides a standardized, systematic, and shared view 
of how to manage innovation. The NECOS experimental results presented in this document were 
performed using technologies validated in the lab (i.e., in reduced scale prototype developed and 
integrated with complementary subsystems at laboratory), defining the current NECOS technology-
readiness-level as 4. Furthermore, some characteristics are validated through numerical analysis and 
measurable Key Performance Indicators (KPI), reinforcing the NECOS classification as TRL 4. 

 

 Structure of this document 
This document is structured in five sections. Section 1 is this Introduction. Section 2 presents the 
NECOS platform validation plan and discusses the inputs from others deliverables. Section 3 presents 
the infrastructure hosting the prototypes used in the NECOS experimental evaluation. Section 4 is 
devoted to describing the demonstrations performed in the experimental environment. Finally, 
Section 5 summarizes our conclusions and outlook. 
 

 Contribution of this deliverable to the project and relationship with 
other deliverables 

WP6 targets directly Objective 4 of the NECOS project, which is stated as to demonstrate the full impact 
of the NECOS solutions by means of the use case implementations. In other words, this WP evaluates 
and shows how the NECOS LSDC platform is able to tackle the challenges presented in specific cloud 
network slicing use-cases/scenarios. 

To achieve the above general project objective, this WP is related to all the others technical WPs. In 
fact, WP6 took inputs from WP2, where the two project use cases were refined into more elaborated 
scenarios. All these scenarios require physical and virtual infrastructures interconnected by means of 
physical and virtual networking resources. This means that WP6 acts as an enabler of the appropriate 
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resources as dictated by the project use cases and scenarios. In addition, WP6 is also related to WP3, 
WP4 and WP5 together getting inputs and providing outputs to each one of them. In fact, WP4 and 
WP5 brought the design of the mechanisms and artefacts, all together within the architecture 
framework of WP3. The functional and non-functional capabilities of such designs had to be reflected 
in the evaluation tests and showcases to be implemented in WP6. In other words, WP6 designed its 
set of evaluation tests (i.e., what is called demonstrations in WP6) oriented to specific capabilities and 
KPIs, from what was designed in WP4 and WP5. Finally, from the results obtained in those tests, 
feedback was provided to the same WPs to refine architectural aspects and specific characteristics of 
NECOS LSDC and APIs. 
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 NECOS Platform Validation Plan 
This section presents the NECOS platform validation plan, which is depicted in Figure 2. These tests 
are driven by the prioritization of D2.2 requirements and architectural concepts in order to fulfil the 
acceptance plan defined in subsection 2.3.  

 

Figure 2. Overall NECOS platform validation plan. 

Testing a system involves executing the software system with test cases that are derived from the 
specification of the real data to be processed. The tests aim to demonstrate to both developers and 
customers that the produced software meets the expected requirements. As shown in Figure 2, the 
tests were divided into 4 stages following well-known methodologies from the literature [Sommerville 
2011]. 

Unit test: includes all testing activities carried out by the team developing the system. Unit testing, 
where individual program units or object classes are tested, should focus on testing the functionality 
of objects or methods. Component testing, where several individual units are integrated to create 
composite components, should focus on testing component interfaces. 

Integration tests: the objectives of these testing activities are to detect faults due to interface errors 
or invalid assumptions about interfaces, including: interface misuse refers to a situation where a 
component calls another one and produces an error while using the related interface e.g., the 
parameters are provided in the wrong order; interface misunderstanding is raised when a calling 
component embeds assumptions about the behaviour of the called component which are incorrect; 
timing errors happen when the called and the calling components operate at different speeds, and 
out-of-date information is accessed. 

System testing: the system testing of an application is done on the whole software system in order to 
check the overall compliance of the product with the functional requirements. It is performed when 
some or all of the components in a system are integrated and it can, thus, be tested as a whole. In this 
deliverable, the results of both the functional and non-functional testing will be presented. The 
behaviour of the system is tested to check if it meets the specified requirements using the real data. 

Acceptance verification: all features (Table 1) desired in a system should be covered by the system 
tests for the acceptance to be properly completed.  

In order to validate and demonstrate the NECOS overall approach, we have defined and setup five 
interrelated demonstrations: MUlti-Slice/Tenant/Service (MUSTS), Marketplace (MARK), Experiments 
with Large-scale Lightweight Service Slices (ELSA), Machine-learning based orchestration of slices 



 

 
 

D6.2: Complete report on validation and demonstration of the 
Integrated Platform  

 

EUB-01-2017 14 

(MLO), and Wireless Slicing Services (WISE). Note that the integration test is presented only for the 
demonstration MUSTS, since it involves several components developed by different teams. 

 Prioritization of Requirements 
The NECOS architecture was designed considering approximately 100 different requirements, whose 
prioritization process is presented in Figure 3. In deliverable 3.1 [D3.1] the prioritization of scenario’s 
requirements identified in deliverable 2.1 [D2.1] was assessed making use of the Quality Function 
Deployment (QFD) method. Based on the requirements prioritization, a set of features was identified. 
Next, the deliverable 2.2 [D.2.2] presented a new set of requirements focusing on the NECOS platform 
but using the scenario's requirements from D2.1 as baseline. Thus, in order to reuse the QFD analysis, 
it was necessary to provide a link between the requirements from D2.1 into D2.2, and then, generate 
a prioritization from D2.2 requirements that was presented in D3.2. 

 

Figure 3. D2.2 requirements prioritization process. 

Table 1 presents revised prioritization of D2.2 requirements. This is the set of requirements and 
features that will drive the all validation process. 

Table 1. Prioritization of requirements from D2.2. 

Feature D2.2 requirements 

Slice Provisioning NFR‐4.1, NFR‐4.3, FR-1.1, FR-1.2, FR-1.3, FR-2.8, FR-2.10, and FR-9.1 

Isolation NFR-2.X, NFR‐4.1, NFR‐4.3, FR-1.1, FR-1.2, FR-1.3, FR‐2.3, FR-2.6, FR-2.8, 
FR-2.10, FR-5.2, and FR-9.1  

Management NFR‐4.1, NFR‐4.2, NFR-6.X, NFR-7.X, FR-1.2, FR‐1.3, FR‐2.1, FR‐2.4, FR‐
5.3, and FR‐6.1  

Elasticity NFR-4.X,, NFR-5.3, NFR-5.4, NFR‐12.3, FR-2.11; FR-2.12, FR‐4.1, and FR‐
4.4 

Scalability NFR‐4.X, FR-1.2, FR‐2.3, FR-2.6, FR-2.7, FR-2.8, and FR-2.9  

Monitoring NFR‐12.4, FR-1.1, FR‐2.3, FR-2.6, FR-2.7, FR-2.8, FR-2.9, FR-2.10, FR‐3.4, 
FR‐5.1, FR-5.2, FR-7.2, FR-7.3, FR-8.1, FR-8.2, FR‐9.5, and FR‐10.2 
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VIM-independence NFR-5.3 and FR‐4.3 

Bare-metal slice NFR-6.X 

The 8 main requirements, which are underpinning the validation process, are as follows: 

● Slice Provisioning: is the functional architecture feature related to supporting rapid 
resource/service provisioning using the Marketplace to discover the resources that will be 
deployed by the DC/WAN Slice controllers; 

● Isolation: is the factor that distinguishes slicing from other cloud-based solutions. Since the 
slices are isolated from each other in all network, computing, and storage planes, the user 
experience of the slice will be the same as if it was a physically separate infrastructure; 

● Management: the tasks related to this feature are executed by the LSDC Slice Provider. It 
includes the Slice Resource Orchestrator (SRO), which combines the slice parts that make up a 
slice into a single aggregated entity. It is responsible for the orchestration of several elements 
that are utilised for the creation of the end-to-end slices (either Virtual Machines (VMs) and 
virtual links or Physical Machines and tunnels in the resource domains), as well as for the actual 
deployment of the service elements on the above slices, on the basis of the embedding 
decisions performed by the Tenant via the Service Orchestrator; 

● Elasticity: when a slice has to be augmented with resources regardless of their location (or 
other requirements that cannot be fulfilled with the already allocated slice parts), the SRO will 
contact the Slice Builder to delegate the process of looking for additional resources that can 
be attached to the existing slice as new slice parts; 

● Scalability: is related to the system ability to increase workload size within the existing 
infrastructure (hardware, software, etc.) without impacting performance of the running 
services. We can think in scalability in two different dimensions: scalability of a particular 
provisioned slice and scalability of the number and size of the slices provided. 

● Monitoring: The Infrastructure and Monitoring Abstraction (IMA) component, allows the Slice 
Provider to interact with various remote Virtual Infrastructure Manager (VIMs) and Wide-area 
network Infrastructure Manager (WIMs) using plug-in adaptors with the relevant API 
interactions. Besides that, it allows the SRO to interact with the remote clouds and the 
monitoring subsystems therein in a generic way, in order to provision the actual tenant 
services and to monitor the remote resources running those services; 

● VIM-independence: The tenant has direct control of the VIM, including the decision of when 
and where to deploy the VIM; 

● Bare-metal slice: It is a slice created using physical resources instead of virtual resources. 

 

 NECOS key Performance Indicators 
The NECOS KPIs were formerly defined in D2.1. Based on the prioritization of requirements, we have 
then identified a subset of KPIs to be used in the validation process. This subset is presented in Table 
2 together with the information about the associated features, the proper way to measure them and 
relevant test implementation aspects. 

Table 2. Prioritized KPIs associated to NECOS features. 

Features KPI How to measure 

Slice KPI4 - Average slice Collect the time measured from the tenant 
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Provisioning provisioning time (in seconds) during the Create slice workflow. 

Isolation KPI15 - Slice isolation index  

Collect Central Processing Unit (CPU) and / or 
RAM utilisation data from two slices while 
stressing the resources of a given slice without 
affecting the resources of the other slice. 

Management KPI3 - Average service 
provisioning time (in seconds) 

Collect the overall time for deploying the service 
measured from the perspective of the Tenant. 

Elasticity KPI1 - Average elasticity 
response time (in seconds) 

Measure the time between the instant when a 
trigger for the elasticity is generated and the 
instant when the elasticity operations have been 
accomplished. 

Scalability 

KPI4 - Average slice 
provisioning time (in seconds) 
during the Resource Discovery 
Create slice workflow 

 

 

Measure resource discovery characteristics for 
slices of different sizes and with a varying 
number of providers. The former will include the 
number of messages exchanged, alternative 
offers on Data Center (DC) and Net slice parts, 
the number of alternative slice instantiations 
generated by the offers, and time to complete 
the discovery. 

Monitoring KPI 7 - Monitoring-data 
availability 

Show the amount of data from IMA collected in 
each slice over the slice life-time. 

VIM-
independence 

KPI4 - Average slice 
provisioning time (in seconds) 

Collect the time spent to deploy different VIMs in 
the same Slice. 

Bare-metal slice KPI9 – Physical Server 
Utilization 

Collection of the measurements related to the 
allocations of different (physical) resources that 
form the slice parts. Demonstrating that 
overloading one end-to-end Slice does not affect 
the other Slices in the same Resource Provider, 
as they use a disjointed set of physical resources. 

The KPIs presented are described next: 

● KPI 1 - Average elasticity response time (in seconds): it is the time required to perform the 
elasticity action. It starts with the first elasticity request performed by the tenant until the 
operation is completed when the slice is reconfigured; 

● KPI 3 - Average service provisioning time (in seconds): it is the time required to perform the 
service provision. It includes the time interval since the service request is performed by the 
tenant (after the provision) until the service is completely instantiated on the slice; 

● KPI 4 - Average slice provisioning time (in seconds): it is the time required to perform the slice 
provision. It starts with the request performed by the tenant until the slice is completely 
allocated and instantiated together with the VIMs. 

● KPI 7 - Monitoring-data availability: Provision of monitored data to the Slice Provider operator 
and the tenant; 
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● KPI 15 - Slice isolation index: Slice isolation to highlight data segregation over a multi-domain 
environment. 

● KPI 9 - Physical Server Utilization: Quantifies the resource-efficiency of the NECOS Slice as a 
Service capability measuring the physical utilization of CPU and / or memory. 

 

 Acceptance Plan 
The subset of non-functional requirements presented in Table 1 are supported through the KPIs 
identified in Table 2. Since the Slice Creation and Slice Elasticity workflows make reference to most of 
the presented functional requirements (see Figure 4), we decided to exercise them in order to validate 
the functional requirements. 

 

Figure 4. Functional requirements used in the workflows. 

For system testing, each of the functional and non-functional requirements listed in Table 2 will be 
validated separately. The functional requirements validation will be performed with the focus of 
verifying that they have been implemented correctly and completely. If errors are found, these will be 
reported, and corrections or changes will be implemented to meet the requirements. For non-
functional requirements, Table 2 presents how to evaluate these requirements, how to measure and 
implement the test. The acceptance criteria for system tests are: i) all the priority bugs are fixed and 
verified; ii) all the test cases have passed.  

System testing is performed  end-to-end by developers and testers to check if the software meets the 
specified requirements. While testing how the system is behaving as a whole, also its functionality and 
performance are checked by using demo data (including possible dummy inputs) instead of the 
production one. Through these tests the software is checked for complete specification including 
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hardware and software, memory, and number of users. Defects found during the system testing will 
then be fixed based on priorities.  

For acceptance verification, the system tests results will be verified to approve the features coverage. 
All features must provide evidence that: i) there are no critical defects left open; ii) all functional and 
non-functional requirements attached to the features are correct and complete; and iii) the solution 
process is working fine, receiving entries correctly, processing as specified and returning correct 
outputs. 
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 Integrated NECOS Platform Testing Environments 
The NECOS integrated test environment is a distributed resource infrastructure that was used to host 
the NECOS prototypes in different locations in order to show that the devised distributed architecture 
is suitable for deployment in realistic scenarios. 

 Prototypes 
The NECOS platform components used in the demonstrations are either developed from scratch or 
based on existing software components. Implementations from scratch usually imply fewer 
dependencies and requirements from external software and libraries, while, in general, an 
implementation based on re-using solutions contribute to an increased number of requirements. The 
prototypes that were fully presented in deliverable 5.2 [D5.2] are briefly summarised in this 
deliverable. 

 The Slice Builder 

Description 
The Slice Builder is responsible for building a full end-to-end multi-domain slice from the relevant 
constituent slice parts. When the Partially Defined Template (PDT) message has been specified, the 
Slice Specification Processor sends such a message to the Slice Builder invoking the 
initiate_slice_creation method. 

Functional requirements implemented 
● FR‐3.1 ‐ Analysis of specific policies and rules for slice requests 
● FR‐3.2 ‐ Request resources for slice parts 
● FR‐3.3 ‐ Provide different mechanisms for defining the final slice specification 
● FR‐3.4 ‐ Creation of contracts for resources reservation among resource providers, NECOS 

platform and tenants 
● FR‐3.5 ‐ Perform reservation and activation of slice parts 
● FR‐3.6 ‐ Provide slice and slice parts information 

 Slice Spec Processor 

Description 
The Slice Specification Processor component handles the requests for slice creation coming from the 
Slice Activator (in the tenant's domain). In our prototype implementation, the Slice Specification 
Processor is implemented as a RESTful service using Python. 

Functional requirements implemented 
● FR‐1.3 ‐ Provide slice management interface (SSP) 
● FR‐2.1 ‐ Management of connections between slice parts to have an end‐to‐end slice 
● FR‐2.2 ‐ Interact with Slice Database for querying purposes and to provide slice updates 
● FR‐2.3 ‐ Continuously update IMA regarding VIM, WIMs and Monitoring pointers 
● FR‐2.4 ‐ Provide operational functions for slice management 
● FR‐2.5 ‐ Request slice parts removal 
● FR-2.6 - Process slice monitoring information provided by the IMA 
● FR-2.7 - Evaluate the need for upgrading or downgrading the resources within a slice 
● FR-2.8 - Evaluate requests for upgrading or downgrading the resources within a slice 
● FR-2.9 - Selection of resources that will be allocated or freed in the elasticity process 
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● FR-2.10 - Request the addition or removal of resources within slice parts 
● FR-2.11 - Provide an elasticity process that prioritizes vertical elasticity over a horizontal 

approach 
● FR-2.12 Implement horizontal elasticity by requesting the creation or removal of slice parts 
● FR‐3.1 ‐ Analysis of specific policies and rules for slice requests 
● FR‐3.2 ‐ Request resources for slice parts 
● FR‐3.5 ‐ Perform reservation and activation of slice parts 

 DC and WAN Slice Controllers 

Description 
The DC Slice Controller is the component of the NECOS Architecture in charge of creating DC slices 
within the data centre. It is responsible for allocating the required compute and storage resources for 
a given slice part, and returning a handle to a VIM running on it, for each data centre.  

The WAN Slice Controller component resides inside each Network Provider and that dynamically 
creates a network slice, as a part of a full cloud network slice. A network slice is a set of virtual links 
that connects two DC slices. In order to create a network slice, the WAN Slice Controller manages all 
of the network resources in the network provider domain that are allocated to participate in slicing 
and keeps track of which network resources have already been allocated to which slice. 

Functional requirements implemented 
● FR‐4.1 ‐ Support allocation, removal and modification of resources for slice parts 
● FR‐4.2 ‐ Accept or reject contracts for resource reservation 
● FR‐4.3 ‐ Instantiation and removal of VIMs and WIMs for slice parts 
● FR‐4.4 ‐ Support requests for connecting and disconnecting slice parts together 
● FR‐4.5 ‐ Process requests for upgrading and downgrading resources within slice parts 

 WAN Slice Controller 

Description 
An (additional) implementation of the WAN Slice Controller has been developed in support of the 
Wireless Slicing sErvices (WISE) demonstration (see Section 4). The prototype leverages virtualization 
capabilities from both OpenWrt and Open vSwitch to create WiFi Local Area Network (LAN) slices on 
top of an off-the-shelf WiFi access point.  

Functional requirements implemented 
● FR‐4.1 ‐ Support allocation, removal and modification of resources for slice parts 
● FR‐4.2 ‐ Accept or reject contracts for resource reservation 
● FR‐4.4 ‐ Support requests for connecting and disconnecting slice parts together 
● FR‐4.5 ‐ Process requests for upgrading and downgrading resources within slice parts 

 Slice Resource Orchestrator (SRO) 

Description 
It is responsible for combining the slice parts that make up a slice into a single aggregated Slice. It is 
also responsible to invoke the proper IMA resource adapters in order to instantiate the required 
service elements on the different slice parts (of the end-to-end Slice). This is done according to the 
particular service embedding strategy that was requested by the Tenant via their Service Orchestrator. 
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Functional requirements implemented 
The current SRO implementation took the functional requirements in Deliverable 2.2 as input and 
covered several of them. Currently, the SRO implements the following functional requirements.  

● FR-2.1 - Management of connections between slice parts to have an end-to-end slice 
● FR-2.2 - Interact with Slice Database for querying purposes and to provide slice updates 
● FR-2.3 - Continuously update IMA regarding VIM, WIMs and Monitoring pointers 
● FR-2.4 - Provide operational functions for slice management 
● FR-2.6 - Process slice monitoring information provided by the IMA 
● FR-2.7 - Evaluate the need for upgrading or downgrading resources within a slice 
● FR-2.10 - Request the addition or removal of resources within slice parts 
● FR-2.11 - Provide an elasticity process that prioritizes vertical elasticity over a horizontal 

approach 
● FR-2.12 - Horizontal elasticity by requesting the creation or removal of slice parts 

 Slice Database 

Description 
The Slice Database is a module that interacts with the Slice Resource Orchestrator in the Slicing 
Orchestrator. The Slices Database keeps information about the topology and the resources of the 
slices for their whole lifetime. The Slices Database stores the data of the deployed slices such as 
location, pointers and identifiers of its parts. 

Functional requirements implemented 
The Slice Database implements the following functional requirements.  

● FR-6.1 - Provide an interface for slice management 
● FR‐6.2 ‐ Provide information about slices, slice parts and services 

 

 Infrastructure & Monitoring Abstraction (IMA) 

Description 
IMA is responsible for ensuring the monitoring process of the end-to-end Slices created in the 
context of a NECOS Slice Provider. Each end-to-end Slice will include different slice elements, i.e., the 
resource substrate represented by the slice parts, as well as the virtual resources associated with the 
service elements running on those slice parts. Since IMA provides an adaptation layer between the 
Slice Resource Orchestrator and the VIM / WIM running in each slice part, it will also be responsible 
for the management of the services in terms of deploying, re-deploying and deleting the service 
components running inside each of the slice parts.  

Functional requirements implemented 
● FR-5.2 - Provide slice monitoring metrics 
● FR‐5.3 ‐ Provide management operations for deployment of virtual functions 
● FR‐6.2 ‐ Provide information about slices, slice parts and services (Slice Database) 
● FR-9.3 - Start service deployment 
● FR-9.4 - Support management functions for running slices 
● FR‐10.1 ‐ Process service deployment requests 
● FR‐10.2 ‐ Provide service access and monitoring interfaces to the tenant 



 

 
 

D6.2: Complete report on validation and demonstration of the 
Integrated Platform  

 

EUB-01-2017 22 

● FR‐11.1 ‐ Provide service deployment within a slice  

 Slice Broker and Slice Agent with RabbitMQ 

Description 
The Slice Broker and Slice Agents components are part of the NECOS Marketplace. The Slice Broker is 
the component that receives a PDT Message request, decomposes it to its constituent slice parts and 
addresses each slice part request to different Slice agents. The SRA message returned at the end of 
this process, contains all the alternative offerings from providers for each part. This prototype was 
implemented in Python. 

The Slice Agents are responsible for answering slice parts requests by matching the latter (i.e., ensuring 
“coverage”, see D5.2) to provider resources and reporting back with an offer that minimizes the slice 
part cost. The prototype implementation includes components in Python and in SWI-Prolog (Constraint 
Logic Programming System). 

The infrastructure that allows message exchange between the Slice Broker and the Slice Agents relies 
on the RabbitMQ 1  open source messaging broker that also handles the Slice Agent Registration 
process. 

Functional requirements implemented 
● FR-7.1 - Support a search mechanism for requesting resources from infrastructure providers 
● FR-7.2 - Capability of identify potential network resource providers based on DC resource 

offers 
● FR-7.3 - Provide resource offers in the form of alternative resources 
● FR-7.4 - Accept registration of Slice Agents 
● FR-8.1 - Process resource requests and check local availability 
● FR-8.2 - Provide resource options as answers for resource requests 
● FR-8.3 - Constantly check the availability of resources in the local domain 
● FR-8.4 - Registration with the Slice Broker 

 

 Slice Broker with HUG 

Description 
Provides a rendezvous point where the Resources Providers can register and accept the requests from 
the Slice Provider that are routed by the Broker. The prototype is implemented as a RESTful service 
using Python and HUG2. 

Functional requirements implemented 
● FR-7.1 - Support a search mechanism for requesting resources from infrastructure providers 
● FR-7.2 - Capability of identify potential network resource providers based on DC resource 

offers 
● FR-7.3 - Provide resource offers in the form of alternative resources 
● FR-7.4 - Accept registration of Slice Agents 

                                                           
1 https://www.rabbitmq.com/  
2 https://www.hug.rest/  

https://www.rabbitmq.com/
https://www.hug.rest/
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  Slice Agents with HUG 

Description 
Allows the Resource Providers to expose information about the available WAN and DC resources. After 
the Agents registration in the Broker, requests originated from the Slice Provider can be processed. 
This prototype is implemented as a RESTful service using Python and HUG. 

Functional requirements implemented 
● FR-8.1 - Process resource requests and check local availability 
● FR-8.2 - Provide resource options as answers for resource requests 
● FR-8.3 - Constantly check the availability of resources in the local domain 
● FR-8.4 - Registration with the Slice Broker 

 
 

 The NECOS roles 
This section describes the types of NECOS roles namely, Slice Provider, Resource Provider, and 
Resource marketplace. These roles have been described in the deliverable "Consolidated definition of 
use cases, business models and requirements analysis" [D2.2]. Also, the needed NECOS software 
components for each NECOS role are listed. Also, the NECOS software components needed for each 
NECOS role are listed. 

 Slice Provider 
The Slice Provider is composed by following NECOS software: 

● The Slice Builder and Slice Spec Processor; 
● SRO; 
● Slice DataBase; 
● IMA. 

 Resource Provider 
The Resource Provider is composed by the following NECOS software: 

● DC/WAN Slice Controllers; 
● Slice Agents. 

 Resource Marketplace 
The Resource Marketplace is composed by the following NECOS software: 

● Slice Broker.  
 
 

 Infrastructure for validation 
The infrastructure for validation is a combination of different Islands (i.e., a set of resources made 
available from a single administrative domain) together with the network interconnecting them. 
Connectivity between Islands could be through either private or public infrastructures like Software 
Defined Networking (SDN) infrastructures, Virtualized infrastructures or standard Internet Service 
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Provider (ISP) connectivity. Due to security constraints, private networks through public Internet are 
set up between the different islands for our validation purposes. 
 

 
Figure 5. NECOS Integrated test environment. 

 Islands 
The NECOS integrated test environment is composed, as presented in Figure 5, by the following islands: 

● Slice Provider at UFG: 1 Dell EMC PowerEdge R740 server, equipped with two Intel Xeon Silver 
4114 processor, 128 GB (8x 16GB RDIMM, 2666MT/s, Dual Rank) of RAM, and 12 TB of HD; 

● Slice Provider at UFU: 1 DELL PowerEdge R740 of 64GB-RAM and two Intel Xeon Silver 4114 
2.2G 10C/20T, each server; 

● Resource Marketplace at UOM using Slice Broker with RabbitMQ: One Dell PowerEdge R630 
(8 CPU cores @2.1Ghz, 16-48GB RAM) server hosting (XEN Server virtualization environment) 
hosting VMs for the Broker and the RabbitMQ messaging platform; 

● Resource Marketplace at UFPA using Slice Broker with HUG: The Slice Broker is running in a 
VM with 2 CPUs and 4 GB of memory hosted in a Server Dell EMC PowerEdge R740, Intel Xeon 
Silver 4114 2.2G, 10C/20T, 9.6GT/s 2UPI, 14M Cache, Turbo, HT (85W) 64GB DDR4-2400; 

● Resource Provider at UFU: The resource provider located at UFU consists of a rack with three 
DELL PowerEdge R740 of 64GB-RAM and two Intel Xeon Silver 4114 2.2G 10C/20T, each server. 
The servers compose an OpenStack cluster in which virtual machines are used to deploy slice 
parts by adopting Kubernetes as VIM;  

● Resource Provider at UNICAMP: The resource provider located at UNICAMP consists of a Dell 
PowerEdge R740, with OS: Linux Ubuntu 18.04 LTS, Kernel: 4.15.0-51-generic x86_64, two Intel 
Xeon Silver 4114 CPU @ 2.20GHzD-1518 processors, RAM 64GB DDR4 and HD 2TB; 

● Resource Provider at UFSCar: The resource provider located at UFSCar Sorocaba consists of a 
Supermicro model X10SDV-TP8F, with OS: Linux Ubuntu 18.04 LTS, Kernel: 4.15.0-58-generic 
x86_64, CPU Quad core Intel Xeon D-1518 2.2GHz (-MT-MCP-) with 8 threads, RAM 64GB DDR4 
and HD 2TB; 
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● Resource Provider at UOM: This resource provider (acting as an edge cloud server) is located 
at the University of Macedonia and has OS: Linux Ubuntu 18.04 LTS, kernel: 4.15.0-55-generic 
x86_64, CPU Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz, 16GB DDR3 RAM, and HD 1TB; 

● Resource Provider at UFRN: UFRN's REGINA-Lab testbed is built on top of an OpenStack-
empowered cluster enclosing three Dell PowerEdge R740 servers interconnected by 
OpenFlow-enabled wire-meshed switches with 1 Gbps interfaces. The compute infrastructure 
is composed by three servers each featuring 40 vCPUs and RAM of 64 GB. The SDN 
infrastructure entails 6 Mikrotik RB951G-2HND (CPU of 600 Mhz and RAM of 128 MB) 
switches, along with two TP-Link 802.11b/g/n TL-WR1043ND v3 Access Points to provide 
broadband WiFi-sharing connectivity; 

● Resource Provider at UCL: The resource provider located at UCL is based on: 1x Blade server 
M630, relying on 2 x Intel(R) Xeon(R) CPU E5-2680 2.70GHz and 160Gb of RAM; 1x Dell 
PowerEdge R730 with Intel Xeon E5-2680 v3 2.5GHz, 12 cores, 192GB RAM, 1.2TB HDD; 4x 
servers with Quad-Core AMD Opteron(R) Processor 2347 HE, 32 GB RAM, 700GB HDD; 

● Resource Provider at 5TONIC: the resource provider enabled by TID at 5TONIC premises is 
based on 1x PowerEdge R720 with 2x Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz, 6 cores per 
socket (for a total of 12 cores or 24 vCPU), 128GB of RAM, and 2TB as HDD; 

● FED4FIRE Experimental Testbeds for the Marketplace Resource Discovery Demonstration: 
Information regarding resource availability is going to be obtained by the FED4FIRE testbeds, 
that will be considered as resource providers in the marketplace demo. Hosts in some of the 
testbeds listed below are going to host the Slice Agents of the Marketplace Resource 
Discovery. We list below information for the testbeds used and examples of configurations of 
nodes (hosts/servers) in clusters, where the latter are groupings of identical nodes. For 
conciseness, we omit full node specs of all clusters in a testbed. 

○ Virtual Wall 1: 3 clusters, 206 nodes (servers), e.g. cluster: 
■ 100 x pcgen2 nodes: cpu 2x Quad core Intel E5520 (2.2GHz) CPU, ram 12GB, 

hdd 1x 160GB harddisk, lan 2-4 gigabit nics per node. 
○ Virtual Wall 2: 5 clusters, 162 nodes (servers), e.g. cluster: 

■ 100x pcgen3 nodes: cpu 2x Hexacore Intel E5645 (2.4GHz) CPU, ram 24GB, hdd 
1x 250GB harddisk, lan 1-5 gigabit nics per node. 

○ Cloudlab Utah: 1 cluster, 315 nodes (servers), e.g. cluster: 
■ 315 x m400 nodes: cpu: Applied Micro X-Gene system-on-chip, Eight 64-bit 

ARMv8 (Atlas/A57) cores at 2.4 GHz, ram 64 GB, hdd 120 GB of flash (SATA3). 
○ Cloudlab Wisconsin: 2 clusters, 100 nodes (servers), e.g. cluster: 

■ 90 x Cisco UCS SFF 220 M4 nodes: cpu: 2x Intel E5-2630 v3 85W 8C at 2.40 GHz 
for a total of 16 cores, ram 128 GB, hdd 375 TB. 

○ Grid5000: 33 clusters, 1064 nodes (servers), e.g. clusters: 
■ 32 x Grenoble dahu nodes, cpu: 2 x Intel Xeon Gold 6130 16 cores/CPU, ram 

192 GB, hdd 240 GB SSD + 480 GB SSD + 4.0 TB HDD, lan 10 Gbps. 
■ 64 x Nancy grvingt nodes, cpu: 2 x Intel Xeon Gold 6130 16 cores/CPU, ram 

192 GB, hdd 1.0 TB HDD, lan 10 Gbps 
 

 Private Interconnection between Europe and Brazil 
This section describes how the interconnection between the islands was achieved and the technologies 
used in the NECOS demonstrations. 



 

 
 

D6.2: Complete report on validation and demonstration of the 
Integrated Platform  

 

EUB-01-2017 26 

Islands connectivity 
All the islands running the Slice Provider components are capable of providing network connectivity to 
the Tenant, in a way that instantiated DC’s resources at an island can have network connectivity to 
another DC resource instantiated on a remote location. This will include the case of different slice parts 
that have been allocated in several NECOS islands but belong to a common end-to-end Slice. On the 
control level, all NECOS components use standard network connections to communicate, making use 
of the Internet and VPN. 

Software  
The connectivity at the slice parts level is provided by Virtual Extensible LAN (VXLAN) tunnels using 
Open vSwitch (OVS)3. An OVS bridge is created on demand for each instantiated slice part and is then 
connected to another OVS bridge instantiated on the remote edge where the connectivity must take 
place.  

We have implemented a solution that takes care of the setup of the multiple tunnels as part of our 
WAN Slice Controller component, as described in subsection 3.1.1. In practice, the solution is based on 
multiple agents located at each DC resource provider and one central element that communicates with 
the agents while also managing a database containing information regarding all created connections 
and their respective attributes. The resulting connectivity is a L2 network overlay over the existing L3 
network layer, that in most cases relies on the Internet. 

Issues 
By default, the VXLAN tunnels do not implement encryption, so security concerns might be an issue to 
be considered. This can be overcome by setting Virtual Private Network (VPN) tunnels under the VXLAN 
tunnels, but at the moment it is not part of our solution. As one of the requirements of our network 
connectivity solution, the Slice Provider edges to be connected need to be able to communicate to 
each other over the network already, since this connectivity will be the base to the overlay network to 
be instantiated.  

Most of our islands have a public IP address reachable over the Internet. However, in the case of the 
Telefonica island, the only way of accessing the 5TONIC server running the DC component was through 
a VPN connection. Therefore, the VXLAN tunnels for instances located on this edge were configured 
using VPN tunnels. Although this approach allowed solving the above issue, it required an additional 
layer of complexity which also impacts the performance of the connection. 

 
 

 

 

  

                                                           
3http://docs.openvswitch.org/en/latest/faq/vxlan/ 
 

http://docs.openvswitch.org/en/latest/faq/vxlan/
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 Demonstrations and NECOS Validation Results 
In the context of the NECOS project, five demonstrations have been worked out. The main one involves 
multiple tenants who request services provided via the NECOS platform running in an integrated test 
environment. The remaining demonstrations focus on more narrowly defined and specific aspects like 
scalability, intelligent mechanisms, and so on. Each demonstration has an objective with a series of 
inputs provided by the tenant, and some expected outputs. The tenant is responsible for the service 
running in the slice, playing the role of a customer requesting the slice in order to accommodate the 
deployment of a service. 

 MUlti-Slice/Tenant/Service (MUSTS) 
MUSTS is the main NECOS demonstration that creates 2 slices using one slice provider hosted by UFG, 
the marketplace hosted by UFPA, and four resource providers (UFSCar, 5TONIC, UoM and UNICAMP), 
as presented in Figure 6. Slices requested by two different tenants are shown through their complete 
life cycles. Each tenant has specific resource and service constraints that must be supplied and 
guaranteed by NECOS. More specifically, one tenant runs a Touristic service while the other runs an 
Internet of Things (IoT) service, which are derived, respectively, from the Network Slicing for Touristic 
Content Distribution and Network Slicing for Metropolitan Integrated Monitoring scenarios [D2.2]. 

 

Figure 6. Instantiation of the MUSTS demo on the distributed experimental infrastructure. 

 Objectives 
This demonstration aims at exercising the following key features of NECOS: slice creation, slice 
decommission, slice monitoring, service deployment, service update, VIM heterogeneity, and elasticity 
upgrade (both vertical and horizontal). The features slice creation, slice decommission, slice 
monitoring and service deployment are features exercised in both slices, as they are essential for every 
slice. However, the feature VIM heterogeneity is exercised only in the Touristic service slice to 
showcase the capability of NECOS to support different VIM technologies, in our case, Docker and XEN. 
The elasticity feature is exercised in the IoT service slice, in which we demonstrate the NECOS capability 
of vertical and horizontal elasticity upgrades. 
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Touristic Service for End-to-End Slice  
The touristic Content Delivery Network (CDN) service is a cloud network slice use that delivers touristic 
content to users based on their geographic location. The idea is that tourists visiting specific locations 
(e.g., cities, archaeological sites, museums, churches, or towers) are more likely to request content 
related to a geographical site. 

Assumptions of the touristic CDN scenario include: i) a central Web server hosting all content 
(videos/web pages), and ii) three edge cloud nodes hosting a single video and a web site related to 
their geographic location. For instance, the core cloud node could be Brazil-Unicamp, an edge cloud 
node with Greek Touristic content could be Greece-UOM, an edge cloud node with Spanish content 
could be 5G-Tonic and another edge cloud with Brazilian content could be Brazil-UFSCar. Touristic 
content requests (video or web content) from a visitor sightseeing Spain are directed either to the local 
edge cloud server, in case that the requests are related to Spain (e.g., visiting hours for the Royal Palace 
of Madrid), or to the core server if his requests are irrelevant to his position (e.g., a youtube video for 
healthy eating). 

Our implementation approach regarding the aforementioned service aims at highlighting how the CDN 
services benefit by using the NECOS Platform. More importantly, we demonstrate that CDN technology 
brings services close to the end-users achieving efficiency not only in terms of performance (e.g., 
connection time, download time) but also in respect to the processing resources required. For 
example, in the touristic CDN service, applications running at the network edge are lightweight, and 
the edge infrastructure computing resources are much less powerful than the ones at the core. What 
is more, the NECOS Platform facilitates the deployment of such services.  

 
Figure 7. CDN Slice Overview. 

Figure 7 shows the connections among the components in the touristic CDN service. Boxes in blue 
represent the slice-parts holding the CDN service components. Each slice part in the touristic CDN 
deployment is composed of a single VM. Such figure also shows the different VIM technologies being 
used in a geographically distributed slice: the dc-core is using XEN as the VIM and the dc-edges are 
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using Docker. The dc-core slice part accommodates the content services and the Domain Name System 
(DNS) load balancer is responsible to direct the requests to the appropriate DC slice part (core or edge). 
As previously mentioned, the requests are shared among the DC slice-parts according to the client’s 
geographic location. The dc-edges host the content services and benchmarking tools (e.g., load testing 
tools), which are used to test the performance of touristic service.  

Experimental setup 

Core DC - the applications that are running in the core are the following: the DNS load balancer, an 
Apache web server which provides all the web pages, VLC video streaming servers, and the Grafana 
and Influx-db monitoring tools in the touristic Web Server. The inputs in the monitoring tools are the 
results from the benchmarking tools, which are running on edge cloud nodes. 

Edge DC - the services at the edge dc slice parts have been containerized (e.g., Docker). For the web 
services, we use flask and for the video streaming services we use VLC. The benchmarking load testing 
tool used is jmeter. 

DNS Load balancer - it has a major role in the touristic CDN deployment. The DNS server uses a 
JavaScript Object Notation (JSON) configuration file (shown in Figure 8) which has the current 
information about domain names and slice parts’ IPs. In this section, we present only the part of the 
JSON file which is used for the touristic CDN scenario for an edge cloud slice (e.g., dc-edge-brazil). 

 
Figure 8. JSON file used for touristic CDN scenario. 

The DNS can be reconfigured while it is running so we can easily apply any changes that happened 
after the deployment (for example the DC’s IPs). So particularly, the DNS should know the slice parts’ 
IPs (the IPs are defined in the JSON configuration file), while the core’s IP should be added in the edge 
slice parts’ resolv.conf file. 

 IoT Service 
The IoT Demonstration aims to show that NECOS is suitable and also a facilitator in supporting the 
deployment, management and operation of real IoT solutions; being able to provisioning and 
monitoring resources, deploying services and scaling slice resources according to load changes. As 
mentioned above, beyond demonstrating the slice creation, slice decommission, slice monitoring and 
service deployment, this slice specifically showcases the service update and elasticity upgrade, both 
vertical and horizontal. 

The chosen IoT scenario consists of a real-time cargo monitoring and tracking IoT solution, where a 
monitoring device with wireless communication and multiple sensors (temperature, humidity, light, 
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and gps) is attached to a cargo container and rides with it all along its journey. This device periodically 
“wakes-up” and transmits precise monitored data to a centralized system, which allows customers to 
have visibility of their goods in movement and being notified when something happens with their cargo 
(door openings, extreme temperature shifts, etc.). This scenario is illustrated by Figure 9. 

 

Figure 9. Real-time cargo monitoring and tracking. 

The IoT demonstration was built using Dojot, an open source IoT Platform whose development is led 
by CPqD, and a load testing tool for Message Queuing Telemetry Transport (MQTT) IoT devices, which 
was customized for this demonstration. The software components were deployed, initially, in two slice 
parts as depicted in Figure 10. 

 

Figure 10. IoT Demonstration setup based on Dojot micro services. 

The Core DC (slice part 1) runs the cloud Dojot micro services, which are responsible for: managing the 
IoT devices life cycle, storing telemetry data, and providing Representational State Transfer (REST) and 
socket.io interfaces to retrieve, respectively, historical and real time data about the devices. In this 
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Demonstration the slice part 1 is a set of three VMs managed by the Kubernetes VIM (one VM hosting 
the master node and the other two representing the worker nodes). The Dojot micro services are 
deployed in the worker nodes. 

The Edge DC (slice part 2) runs the edge Dojot micro service, called MQTT IoT-Agent, which is 
responsible for establishing connections with the IoT devices and transform the data to be transmitted 
to the cloud micro services. In this Demonstration the slice part 2 is a set of two VMs managed by the 
Kubernetes VIM (one VM hosting the master node and the other representing the worker node). The 
edge Dojot micro service is deployed in the worker node. 

The device simulator runs outside the NECOS infrastructure and simulates connected IoT devices 
publishing telemetry data according to some input settings. 

Figure 11 shows the IoT Slice overview. The Core DC is at Unicamp, Campinas, and the Edge DC is at 
5TONIC, in Madrid. Note that for horizontal elasticity upgrade, a new slice part is created at UFSCar, 
Sorocaba. 

 

Figure 11. IoT Slice overview. 

The major flow of the telemetry data inside the platform is described in Figure 12 with each step 
identified by a red circle with a number inside. A detailed description of each step is given below: 

1) The simulated device opens an MQTT connection through a TCP Load Balancer, publishes some 
telemetry data, and closes the connection; 

2) The TCP Load Balancer redirects the connection/telemetry data to an instance of the MQTT 
IoT-Agent; 

3) The MQTT IoT-Agent authorizes the device connection and sends the telemetry data to the 
REDIS DB, responsible for implementing the PUB/SUB of the MQTT Broker, and also sends it 
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with some extra metadata to the Apache Kafka, responsible for redistributing it to the other 
dojot micro services; 

4) The Persister micro service consumes the telemetry data from Kafka and stores it into the 
MongoDB; 

5) The DataBroker consumes the telemetry data and provides it through socket.io to the 
registered clients. 

 

Figure 12. Dojot data flow. 

An increasing number of cargo containers was simulated, publishing telemetry data (temperature, 
humidity, lightness, gps) with a given periodicity. When the machine hosting the IoT Agent in the edge 
was overloaded due to an increase in the number of requests to the IoT Agent, elasticity took place to 
avoid a degradation of the quality of the service (connections rejections, messages losses and long 
response time). First of all, NECOS would try to do a vertical elasticity upgrade, which means to add a 
new machine to host another IoT Agent in the same slice part. Specifically, in our case NECOS will make 
vertical elasticity in the Edge DC (slice part 2). Then, after making vertical elasticity, the service is 
redeployed so that the new machine receives the new IoT Agent and the requests coming from the 
sensors are now balanced between both IoT Agents.  

A second experiment that was done is related to horizontal elasticity. In this case, NECOS tries to make 
vertical elasticity in the Edge, but there are no more resources in that slice part. Then, SRO triggers the 
horizontal elasticity upgrade which means to add a new slice part to the existent slice. Specifically, for 
this experiment, a new slice part at UFSCar is created. After the SRO receives the return about the 
creation of the new slice part, it triggers the service update (redeployment) so that the new slice part 
is used by the Dojot service. After the service redeployment, requests coming from the sensors are 
balanced between the IoT Agent at 5TONIC (the overloaded slice part) and UFSCar. 
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 Workflow 
 Since this demonstration is the one which exercises the majority of the NECOS features and 
follows the working flows defined in D5.1 and D5.2, the working flow presented in Figure 13 is 
depicted in a higher level of detail.  

 

Figure 13. MUSTS demonstration workflow. 

● Step 1: The tenant calls the NECOS system to create a slice. In this call, the tenant must inform 
the specification of the slice so that NECOS will be capable of building it; 

● Step 2: This step, abstracted as a single step in this figure, follows the complete slice creation 
working flow presented in D5.2. In this step, actions such as looking for candidate slice parts 
in the Marketplace and start the monitoring of the slice are performed; 

● Step 3: The NECOS system returns to Tenant all the details about the slice that was created, 
including information about every slice part, physical resources, location, etc.; 

● Step 4: The Tenant calls its Service Orchestrator so that it can embed into the slice the service 
to be run. The Service Orchestrator can be a very smart engine or a very simple solution (even 
performed by hand by an operator) to decide where to put every service inside the slice; 

● Step 5: Service Orchestrator triggers the deployment of the service. NECOS is responsible for 
parsing the YAML file received and dispatch specific commands in each slice part to deploy the 
correspondent service inside the slice; 

● Step 6: This step represents the elasticity. Specifically, for this Demonstration, it refers to the 
vertical and horizontal elasticity upgrade, which means adding a new resource inside a slice 
part or adding a new slice part, respectively. This is done when a defined threshold is reached. 
For this Demonstration, the SRO is observing the CPU load of the machine where the IoT Agent 
is running. When the load reaches 80%, the elasticity is triggered. Again, as with step 2, the 
elasticity upgrade (both vertical and horizontal) abstracted here in a single step, is fully 
described in D5.1; 

● Step 7: This final step represents the slice decommission call done by the Tenant to delete the 
slice as well as the service running inside it. 

 

 Results 
This demonstration validates 6 of the prioritized NECOS features. Each one of them is presented 
together with the respective results from the experiments performed following the steps defined in 
the last subsection. 
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In order to create a slice, the steps 1 to 3 must be performed. Once this creation is started, the time is 
collected in order to provide the average slice provision time in seconds (KPI 4). The provision time 
includes the reservation time and the instantiation time, as presented in Figure 14. The instantiation 
time is bigger because it incorporates both times to deploy the VIM on-demand and configure all the 
resources to be part of the slice. 

 

Figure 14. Average slice provisioning time (KPI 4). 

Once all the slice parts are allocated, steps 4 and 5 are executed and the service is deployed as part of 
the slice management tasks. Figure 15 presents the overall time for deploying the service from the 
tenant. 

 

Figure 15. Average service provisioning time (KPI 3). 

After steps 4 and 5 are performed the service is running in the slice, so it is possible to overload one 
slice in order to see if the isolation is working properly. Figure 16 shows the last 100 seconds before 
SRO triggered elasticity. As can be seen, after the second 50, the service running on slice 2 (Dojot) 
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started to use a high percentage of CPU without affecting the CPU usage of slice 1 (Touristic), showing 
that the isolation works among slices. 

 

Figure 16. CPU Isolation. 

The step 6 perform the elasticity. Figure 17 presents the results for the horizontal elasticity upgrade, 
which means adding a new slice part to the slice. The time reported in this graph includes the call to 
the slice builder to find the best option to place the new slice part and deploy it, two calls to IMA for 
updating monitoring and management and two more calls to IMA to redeploy and monitor the service. 

 

Figure 17. Average elasticity response time (KPI1). 

During the slice execution, the IMA is performing the monitoring, thus, Figure 18 shows the number of 
metrics that are collected from each Slice every 1 minute. In this case, each Slice has different amounts 
of resources (Virtual Machines) to be monitored, so the number of metrics collected is different 
between them. It can be noted that the metrics grow linearly, and the distance between the number 
of metrics per Slice increases as well, although this difference may vary as the features for each Slice 
change, this is a characteristic of the IMA database. 
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Figure 18. Monitoring-data availability (KPI 7). 

In order to showcase the VIM on-demand concept, Figure 19 presents the average slice provisioning 
time, focusing on the VIMs deployment time. As highlighted in the figure, the Dojot slice uses only one 
type of VIM while the Touristic slice uses 2 VIM types. The difference in the VIMs deployment time for 
the slices is due to the different number of VMs used by each slice, i.e., the Dojot slice instantiates 
more VMs per slice-part than the Tourist slice. The VIM deployment time is also influenced by the 
complexity of the VIM.  

 

Figure 19. Average slice provisioning time (only VIMs). 
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 Marketplace (MARK) 
This demonstration requests multiple slice allocations using one marketplace hosted by UOM and the 
Resources Providers from the FED4FIRE as presented in Figure 20. 

 

Figure 20. Instantiation of MARK on the experimental infrastructure. 

 Objectives 
The main objective of this demo is to demonstrate that the marketplace concept introduced in NECOS 
as a dynamic resource discovery mechanism can cope with slices of significant size and multiple 
geographically distributed resource providers. We assume multiple slice requests and demonstrate the 
behavior of the marketplace components, the involved workflows and the relevant resource discovery 
performance.  

In order to obtain real world data, namely the status of resources, we use 6 FED4FIRE testbeds 
(http://www.fed4fire.eu/testbeds). We developed a (Python) Translator component that is 
responsible to directly communicate with the corresponding test-bed control interface (e.g., jFed CLI), 
and to translate the response message into a uniform format. In practice, we maintain a local 
representation of the resources in JSON format from the following open-access test-beds: Virtual Wall 
1, Virtual Wall 2, Cloudlab Utah, Grid5000, Cloudlab Wisconsin, and w-iLab2. This treatment of the 
resources' features is critical because FED4FIRE represents their resources through Resource 
Specifications (called RSPECs), but not in a uniform manner throughout the test-beds, e.g., the 
resources may have incomplete details or present different attributes.  

FED4FIRE testbeds are organised in clusters of nodes, where nodes in a cluster are machines of 
identical configuration. Each node in a cluster is associated with a cost and in all experiments, we 
assume that one Virtual Deployment Unit (VDU) service is allocated to a single cluster, thus that cluster 
should “cover” the VDU Extended Platform Awareness (EPA) attributes.  

We place the Slice Agents in Fed4Fire testbeds. To facilitate the experimentation process, we reserved 
three hosts in a subset of the aforementioned testbeds, and allocated our agents on these three hosts. 
The allocation is the following: 

http://www.fed4fire.eu/testbeds
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● Virtual Wall 1 (Europe): 4 DC Agents responsible for resource discovery of all the European 
Testbeds and one WAN Agent; 

● Virtual Wall 2 (Europe): 6 DC Agents with “semi-artificial” resource data, and one WAN Agent; 
● Cloudlab Utah (USA): 2 DC Agents responsible for resource discovery of all the USA Testbeds 

and one WAN Agent. 

Each DC Agent is responsible for a testbed, communicating with the latter through the translator. Each 
Slice Agent has a different cost for the hosts it offers. Since FED4FIRE is an open platform, this cost was 
generated using random values. Since the time required by the Slice Agents to report back testbeds 
availability information is far greater than the actual time required to deploy them, we consider that 
the allocation of the Slice Agents in different testbeds would not significantly change our results. In 
order to further investigate further the proposed approach, we have generated “semi-artificial” data 
regarding resource providers, that are variations in terms of resource availability and host 
characteristics based on the real data obtained by the FED4FIRE testbeds. We also included 3 WAN-
Provider Agents that offer connectivity between DC slice parts; in our tested we considered a fully 
connected graph between our slices, i.e. all WAN Agents are able to connect to all the testbeds albeit 
at a different cost. 

The Slice Brokers (that use the RabbitMQ service) are hosted on a server on the UOM premises. We 
have generated multiple slice request cases, by varying the number of slice parts, services hosted in 
each slice part and their tenant requested geographic constraints. In all cases, we investigated the 
number of messages exchanged, the number of slice parts alternatives and the total number of 
alternative slice instantiations and their total cost, from which we derived the slice instantiation of the 
minimum cost.  

Finally, since the testbed deployment is time consuming and in order to further investigate the 
scalability of the proposed approach, we report also on single host experiments, that would allow us 
to conduct (more easily) an experimental evaluation. This single host experiments are reported in the 
corresponding section below. It should be stressed that the implementation tested in the Fed4Fire 
Demo and Single Host experiments is identical.  

 Workflow 
The Slice Broker and Slice Agents prototypes implement fully the NECOS Marketplace functionality. In 
particular, the current implementation is based on the workflow depicted in Figure 21 (Deliverable 
D5.1). 
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Figure 21. Marketplace Resource Discovery Workflow. 

● Step 1: The Broker receives the PDT Message from the Slice Builder and extracts from it the 
different DC slice parts. Each of such DC slice parts is enriched with the necessary information 
regarding its host constraints, obtained by the corresponding service specification that is 
included in the PDT Message (please see deliverables D4.2 and D5.2) and is forwarded to the 
agents via the RabbitMQ messaging platform, annotated with the corresponding geographic 
constraints. 

● Step 2: A Slice agent that receives a slice part request message, computes the clusters that can 
host DC part requested. Since multiple clusters can host a VDU in a slice part (please see D5.2) 
the agent computes its minimum cost answer, based on any allocation constraints regarding 
host availability. Finally, this answer is communicated back to the Broker. 

● Step 3: After having collected all available DC-Agent answers for all the DC slice parts, the 
Broker forms requests addressed to Net-Agents. In order to do so, the Broker extracts 
connectivity information from the slice graph described in the PDT message. Thus, for each 
net-(slice) part it forms a request annotated with the network details (IP) of the providers at 
the ends of each connection. Each such message is sent to all the WAN-Agents. 

● Step 4: WAN-Agents report on the availability and the cost of providing the specific network 
connection. 

● Step 5: After receiving all requests, the Slice Broker combines them into a single SRA message 
and sends it to the Builder.  

 

 Results 
We demonstrated geographically distributed resource discovery for a slice request, emphasizing on: 
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● Scalability: the Marketplace concept can scale to a larger number of providers and in the case 
of the Fed4Fire demo we included results that concern 6 real world testbeds and 6 “semi-
artificial” resource providers and in the case of the SingleHost demo we experimented with 20 
DC providers. We also demonstrated scalability in terms of the requested slice, i.e., we 
reported on resource requests with a large number of slices/resources; 

● Heterogeneity: Resource Discovery can cope with a diverse range of server specifications, as 
the latter are defined by the different testbeds; 

● Cost efficiency: Selection of the minimum cost slice among alternatives, since by having 
information regarding all possible slice instantiation annotated with cost allows the builder to 
apply any technique, either complete or heuristic in order to decide on the final slice 
instantiation; 

● Performance: We reported on the total number of messages exchanged, the wall elapsed time 
since the builder sent the original request, until the final SRA message was received. 

Single Host Experiments 

In order to test and validate the Marketplace implementation, we ran a set of experiments on a single 
host, i.e., all Marketplace components were running on the same Linux machine. On this experimental 
setting, we generated 20 DC providers, with “semi-artificial” data regarding host characteristics and 
availability and 3 WAN Providers.  

Our experimentation involved requests generated in a random manner, as that is reported in the 
corresponding section of D5.2. We have generated multiple requests organised in 5 classes. DC slice 
parts were distributed between Europe and America. The 5 classes of requests were characterized by 
a triplet (DC, NET, VDUS), i.e.,the number of DC and Net slice parts and the total number of VDUs 
allocated in the slice respectively. Thus, in the following the notation (2,1,4) stands for a slice request 
with 2 DC parts, 1 Net part and a total of 4 VDUs allocated in the slice.  

For each of those requests that were executed, we recorded the wall time elapsed since the builder 
sent the original request till it received the SRA answer message from the Broker, as well as the number 
of alternative DC/NET slice parts received. For each SRA received message, using brute force search 
we computed the number of alternative slice instantiations generated by the SRA message, as in D5.2 
as well as the minimum cost slice. However, when the slice request involves a larger number of slice 
parts, and since we assumed a fully connected network infrastructure, this number can increase 
significantly. Thus, we stopped this computation when there were fifty thousand (50000) alternative 
slice instantiations generated and reported on those. Results showing average values from 5 different 
requests in each class and are summarised in Table 3. 

Table 3. Resource Discovery Marketplace on a Single Host. 

Slice 
Request 

Avg Wall Time (sec) 
Alternative 

DC Parts 
Alternative 
Net Parts 

Slice Instantiations Avg Cost 

(2,1,4) 11.31 11 27 27 3.12 

(3,2,6) 16.81 14.2 39.6 320.4 6.68 

(4,5,8) 91.40 18.2 256.2 26924.4 17.68 

(6,7,24) 605.867 55.4 1755 50000 78.08 
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(8,9,32) 763.10 73 2205 50000 103.90 

In terms of scalability regarding the number of providers, the implementation managed to successfully 
accommodate 20 DC providers with no reported problem. It should be noted that this is not the 
maximum number of providers that the marketplace can host, but an indication demonstrating the 
capabilities of the implementation. The implementation is also able to handle slices, ranging from 2 
DC- and 1 Net- parts to 8 DC- and 9 Net- parts and from 4 to 32 VDUs. Regarding the alternative slice 
instantiations that the builder can generate from the received SRA message, these range from a low 
value 27 to more than 50000 alternatives.  

Regarding heterogeneity, the resource discovery process managed to accommodate providers with a 
varying number of resources as well as slice requests with a varying range of host specifications, since 
both were generated using random values. For instance, regarding slice requests, EPA attributes for a 
service that concern storage range from 2 to 30 GB, RAM from 4 to 16GB, and the number of hosts in 
each slice part from 1 to 10 hosts.  

In terms of cost efficiency, given that all alternatives in the SRA message carry a cost, i.e., all alternative 
DC and Net slice parts, have an associated cost, the builder is free to select the lowest cost slice. In the 
current implementation, we select the latter by brute force techniques, which obviously cannot be 
used when the number of alternatives grows significantly. However, given that the complete 
information exists in the SRA message, any technique can be used to compute the desired slice 
instantiation.  

Regarding performance, the wall time since the request was sent to the Broker till the SRA message 
was received, grows with the size of the slice, i.e., DC and Net slice parts. This is expected, since in the 
current implementation the Broker decomposes its slice request into its parts and follows a query-
answer cycle for each. This poses a time penalty, especially in the case of Net-parts, since the number 
of these queries depends on the number of alternatives for each DC slice part. For instance, in the set 
(8, 9, 32) in Table 3, the average number of alternative Net parts (each received by a message to the 
broker from a WAN agent) is 2205, indicating 735 cycles of queries. Efficiently handling this problem 
can be an interesting research direction. 

Fed4Fire Testbeds Results 
Similar experiments were executed in the FED4FIRE testbeds Virtual Wall 1 & 2 and the Cloudlab Utah, 
as described in the corresponding section. This set of experiments was conducted in order to (a) verify 
that the application can indeed be executed in a distributed environment and (b) discover any 
problems that might occur when the DC agents query the real testbeds for up-to-date information on 
available resources.  

As stated above there were a total of 12 DC agents, i.e., 6 accessing real testbed resource data and 6 
“semi-artificial” data and we tested the discovery process in similar queries as in the single host 
experiment. Results are summarised in Table 4. 

Table 4. Resource Discovery Marketplace on the FED4Fire testbeds. 

Slice 
Request 

Avg Wall Time (sec) 
Alternative 

DC Parts 
Alternative 
Net parts 

Slice Instantiations Avg Cost 

(2,1,4) 24.81 8.6 55 55 5.04 
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(3,2,6) 53.93 13.6 125 828.2 10.49 

(4,5,8) 70.57 15 162.6 3506.6 13.94 

(6,7,24) 161.01 26.3 381 50000 49.92 

(8,9,32) 289.00 36.3 518 50000 63.41 

 

Regarding point (a), since the RabbitMQ message passing platform was used as the marketplace 
implementation, no problems were raised when running the software on a distributed set of machines. 
Regarding point (b), we can confirm that the python translator component to the Fed4Fire testbeds 
operated without any problems and that the execution behaviour of the marketplace was similar to 
that of the single host experiments, i.e., the execution time increases as the number of alternative slice 
parts increases since there are more query cycles. Overall, we can safely conclude that the 
implemented functionality is not affected by distributing components in geographically remote hosts. 

 

 

 Experiments with Large-scale Lightweight Service Slices (ELSA) 
This demonstration is composed by one slice provider hosted by UFPA, the Tenant to make the 
requests hosted by UFRN, and the resource providers hosted at UCL, as presented in Figure 22. 

 
Figure 22. Instantiation of ELSA on the experimental infrastructure. 

 Objectives 
The idea of this demo is to show the deployment of end-to-end Slices that will be utilised by a Tenant 
in order to host services consisting of a very large number of lightweight elements (i.e., Virtual Network 
Functions (VNFs) and vLinks) deployed at the Edge of the infrastructure. We will demonstrate how the 
Tenant is able to reuse their existing software components by attaching them to the allocated end-to-
end slice in a completely transparent way. The description of the desired end-to-end Slice is provided 
as YAML input by a Slice Activator component in the Tenant domain to a software component that 
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implements some of the functionalities of both the NECOS Slice Builder and the Slice Resource 
Orchestrator.  

The descriptor will include information (i.e., type of VIM, size, etc.) about the slice parts to be created, 
the links between the slice parts and the monitoring parameters (KPIs) to be collected from each of 
them. In this demonstration, the marketplace-related workflows will not be considered, and the YAML 
descriptor provided to the Slice Builder will contain a predefined set of entry-points of the Slice 
Controllers to be contacted in the Resource Providers. 

The end-to-end Slice specified via the above descriptor will automatically be built on a Slice Provider 
hosted at UFPA. At the UCL premises, 12 of the available 14 interconnected physical servers will be 
hosting different instances of the DC Slice Controller, in order to emulate different NECOS Resource 
Providers. The created DC slice parts will be based on the on-demand instantiation of the Very 
Lightweight Network & Service Platform (VLSP) VIM, which will support the creation of simple 
lightweight service topologies across the different slice parts of an end-to-end Slice (mainly simple 
video streaming services). 

In order to orchestrate the deployment of the above mentioned large-scale services on an end-to-end 
Slice, an instance of the open source (5GEx) ESCAPE 4 Orchestrator will be configured to use the 
resources of that end-to-end Slice as substrate for embedding the required service elements (i.e., VNFs 
and virtual Links). This will happen transparently as the Tenant will attach their existing service 
orchestrator (ESCAPE) to the newly created slices. 

Finally, as soon as the end-to-end Slices will be up and running, the NECOS IMA will start collecting 
relevant KPIs related to it. The implementation of the DC Slice Controller deployed at the UCL Resource 
Provider is based on the instantiation of bare-metal slices. As such, the above collected measurements 
related to the KPI-9 (Physical Resource Utilization) will highlight how the execution of the large-scale 
services deployed on one of the slices will not affect the physical resources of the other slices in the 
same Resource Provider. 

 Workflow 
The Experiment Controller component implementing some of the functionalities expected for the 
NECOS Builder and SRO architectural components will ensure large-scale system operations while the 
slices are created, operated and monitored.  

                                                           
4 https://github.com/5GExchange/escape  

https://github.com/5GExchange/escape
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Figure 23. ELSA workflow. 

More specifically the demo shows the following different steps (see Figure 23): 

● Step 1: The YAML end-to-end Slice Specification (according to the NECOS information model) 
is provided by the Slice / Service Activator component in the Tenant domain to the software 
module implementing the required Slice Builder functions, in order to start the instantiation 
of a new end-to-end slice; 

● Step 2: The above Slice Builder module interacts with different DC Slice Controllers instances 
that are already deployed in the testbed (via the Slice Instantiation Interface), in order to 
request the creation of different DC slice parts, each based on an on-demand instance of the 
VLSP VIM; 

● Step 3: The information about the different allocated DC slice parts is returned back from the 
Slice Builder to the component implementing the functions of the Slice Resource Orchestrator. 
The latter will take care of interconnecting the allocated slice parts via creating an emulated 
tunnelling that will be based on the interaction of custom instantiated VLSP edge routers; 

● Step 4: Resource Adapters attached to the allocated VIM endpoints are dynamically created 
and the handlers to the adapters are provided back to the Slice Resource Orchestrator; 

● Step 5: Monitoring Adapters are requested to the IMA according to the allocated type of VIM 
and Monitoring Subsystem that were deployed in each slice part in order to gather monitoring 
data in a uniform way; 

● Step 6: An instance of the open source ESCAPE service orchestrator is attached to the newly 
deployed end-to-end Slice and the Service Activator will receive a handle to the northbound 
interface of that Service Orchestrator instance. This will be utilised to request the ‘embedding’ 
of a large service request (in terms of number of involved service virtual elements) on the 
previously created end-to-end slice, which will act as the resource substrate. The orchestrator 
will also act as Service Orchestrator Adapter as service requests will be translated in a format 
supported by the Slice Provider; 

● Step 7: IMA collects and aggregates data (via an augmented Data Aggregator) from the 
different slice parts in order to generate KPIs related to the end-to-end Slice; 
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● Step 8: measurements related to the KPI-9 collected from IMA in the previous step that are 
related to (at least) two end-to-end Slice in the UCL Resource Provider will be considered. The 
bare-metal slices built by the DC Slice Controllers will guarantee resources isolation at the 
physical layer. As such, deploying a large-scale service instance on one of the slices, will not 
affect the utilization of the physical resources of the other ones. 

 Results 
We demonstrated how NECOS is able to provide a Tenant with the abstract concept of end-to-end 
Slice, i.e., a fully manageable bundle of resources that can be requested, allocated and then 
transparently used by a Tenant. The latter was eventually able to attach a newly created slice to their 
existing systems (such as Service Orchestrators, etc.) in order to perform the deployment of specific 
services on the end-to-end Slice resource substrate (this is related to the KPI Slice Provisioning). The 
scalable embedding of lightweight virtual service functions could be performed by a Tenant on the 
end-to-end Slices in the above described emulation environment, where the scale of the instantiated 
service elements ranges from hundreds to ~2K VLSP virtual router elements (this is related to the KPI 
Management). The time related to the service instantiation in this particular demonstration (i.e., 
deployment of lightweight VLSP services embedded via the ESCAPE service orchestrator) is reported 
in Figure 24. 
 

 
Figure 24. Service instantiation (embedding and deployment). 

The NECOS architecture and system allowed using heterogeneous types of resources coming from 
different segments of the infrastructure (e.g., from resources constrained edge domains) that were 
bundled as a single object and used for the deployment (embedding) of the desired service 
components. End-to-end Slices could be provisioned via interconnecting slice parts coming from 
multiple Resource Providers (edge domains), which were emulated by partitioning the Data Center 
testbed available at UCL. Each slice part hosted a separate instance of the lightweight VLSP VIM (this 
is related to the KPIs VIM-independence and Slice Provisioning). Figure 26 highlights the time required 
for the allocation of end-to-end Slices in this particular demonstration. The graph shows the number 
of physical resources involved in the creation of different Slices. Please note that sizes on the x-axis 
from 1 to 3 refer to an increasing number of slice parts (i.e., 1 to 3). Values greater than 3 are all based 
on 3 involved slice parts. The parallelism in the required operations allowed the creation of the 
different parts and abstractions in a way that was not related to the number of involved physical 
servers (however this is related to the particular implementation of the DC Slice controller and the 
VLSP VIM). On the other hand, due to the specific way the interconnection between the slice parts was 
performed, it required the propagation of the information about the edge points of a slice parts to the 
adjacent ones. As this had to be performed sequentially, the required time for its execution grew 
linearly with the number of slice parts as reported in Figure 25. 
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Figure 25. Creation of end-to-end Slices. 

This demonstration also showed the process of gathering monitoring data for (i) the service elements, 
(ii) the hosts, (iii) the slice parts, and (iv) the whole slice via IMA (this is related to the KPI Monitoring). 
The measurements collected by the IMA Aggregators from at least two different end-to-end slices in 
the same Resource Provider, showed that the physical resources utilisation (i.e., the average 
percentage of CPU utilisation) measured on the physical resources of an end-to-end slice running a 
service grows according to the load, whereas the same type of KPI in the other slices (where no services 
are running at the same time) does not change. This is shown in Figure 26 and demonstrates the better 
level of isolation introduced by our implemented slicing approach, especially when the slices are 
created directly on the bare-metal. The average CPU utilization (percentage) of the slice running the 
service (slice1 in green) was affected by the load introduced by the service execution, whereas the 
other slice in the same Resource Provider (slice2 in yellow) was not impacted by that as it was using a 
separate set of physical resources. 

 
Figure 26. CPU Utilization on two different bare-metal Slices. 
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 Machine-learning based orchestration of slices (MLO) 
In this demonstration, the Tenant hosted at CPqD requests multiple slice allocations to the Slice 
Provider hosted by UFU that uses the Resources Providers hosted in the same institution as presented 
in Figure 27. 

  

Figure 27. Instantiation of MLO on the experimental infrastructure. 

 Objectives 

The objective of this demo is to show how machine learning algorithms can be useful for the 
orchestration of slices. Two modules of NECOS Architecture, IMA and SRO, were specifically extended 
to enable intelligent monitoring and intelligent elasticity orchestration, respectively.  

Given the multitude of elements composing slices’ infrastructure and the presence of multiple domains 
in which slice parts are spread to create an end-to-end slice, it is natural to expect considerable 
overhead to monitor and to move such data from the IMA towards the SRO. Considering such 
characteristics that can pose a scalability problem, this demo provides intelligence to IMA, enabling it 
to perform automatic selection of features to be monitored. Such selection is performed on a per-slice 
basis, requiring that the SRO provides a target KPI to IMA, so it can select a set of features that better 
describes the behavior of such KPI. We refer to the entire set of infrastructure metrics as full feature 
set, i.e., the set of metrics regarding the entire infrastructure composing the slice. We refer to the 
result of the selection mechanism based on machine learning as selected feature set, i.e., a set of K 
essential metrics selected among all infrastructure metrics composing the slices. 

The IMA, in this demo, performs the collection of all infrastructure metrics (full feature set) in longer 
intervals (less frequently) when compared to the frequency in which the selected feature set is 
collected. It is expected that along the lifetime of a given slice, the target KPI can evolve and, as a 
consequence, the selected feature set can probably present a different composition. This effect is 
justified, for example, by sazonalities related to the usage of the slice. By collecting the full feature set 
in less frequent intervals, the IMA is capable of automatically updating the selected feature set. 

IMA, after the selection of the features, provides the monitoring data to the SRO, according to the time 
interval specified by IMA. As a result, the intelligent version of the IMA presented in this demo reduces 
the volume of data being pushed towards the SRO (the selected feature set), not only improving 
monitoring scalability, but also removing noisy data from the monitoring information. Such noise 
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removal has the potential to improve accuracy in the operations performed by the SRO during slices 
orchestration. 

The intelligent SRO implemented in this demo consumes the selected feature set provided by the 
intelligent IMA with the goal of supporting elasticity decisions. To do it, the intelligent SRO performs 
four steps: 1) KPI Estimation; 2) SLA Prediction; 3) Slice Resources Optimization; and 4) Enforcement 
of Slice Modifications. 

The SLA for a given slice, in this demo, is associated to a KPI. Such KPI can be related to the slice 
infrastructure, considering metrics related to, for example, CPU, memory, network traffic, and others. 
The most interesting aspect of this demo is that, differently from the other SRO implementation, such 
KPI does not have to be generic and can also be directly related to a Service KPI. As such in the demo, 
we actually used Read and Write Response Times of a Cassandra-DHT running as the Service deployed 
in a given slice. The SRO estimates the current state of such Service KPIs as a way of verifying whether 
the slice SLA is being violated or not. An example SLA that might be adopted during the demo is to 
target Read Response Times below 50 milliseconds for verifying the Slice SLA conformance. Besides 
continuous values, the same solution presented in this demo can be applied for services with discrete 
classes, like videos in high or low resolution. 

The first step taken by the SRO, named as KPI Estimation, consumes the monitoring data provided by 
the intelligent IMA, feeding it into a supervised machine learning model (regressor/classifier), which is 
trained to estimate the current state of the target Service KPI. Basically, it is done in order to associate 
the slice’s infrastructure measurements fluctuations with the chosen Service KPI. 

By having the history of estimations, the intelligent SRO is capable of performing the second step, 
named SLA Prediction, which foresees what the state of the SLA will be at a given point in the future. 
This enables the SRO to proactively tune the slice, preparing it for the condition seen in the future. 

The third step, perhaps the most complex out of the four steps listed, has the duty of designing the 
new slice infrastructure arrangement, capable of handling the condition foreseen by the second step 
taken by our intelligent SRO. This third step, by itself, opens several research possibilities, including 
root cause analysis, resource optimization, and others of even higher complexity. 

In this demo, we consider the existence of a set of slice flavours. A tenant, when requesting a slice to 
NECOS – similarly to what is done nowadays when requesting a virtual machine at Amazon – informs 
the flavour which will be applied to its own slice and, additionally, a set of flavours allowed to 
accommodate possible SLA fluctuations. The demo detects in step number two whether the SLA is 
going to be violated or if it is going to be under conformance with a lighter KPI condition, and step 
number three optimizes the slice flavour, among a set of flavours, which is capable of keeping the SLA 
under conformance and, at the same time, with moderate resources consumption, i.e., the service will 
not face SLA violation due to lack of resources, but it will not be running with a set of resources that is 
not really necessary, given the current service condition estimated by the SRO, as well. 

The fourth step does not restrict itself to adjustments in terms of slice infrastructure, already specified 
in NECOS Architecture, it also encompasses intelligent adaptations. Besides the communication among 
SRO and DC/WAN Slice Controllers, the intelligent SRO: 1) requests to IMA the update in the 
composition of the feature set being monitored, ideal to the new slice flavour; 2) updates the trained 
model being used in step number one, which estimates the Service KPI; and 3) updates the predictive 
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models used in step number two. In short, step number four performs an overall, infrastructure and 
intelligence, adjustment in this demo. 

 Workflow 
The demo departs from an established end-to-end slice with a certain service running inside it. As a 
first step in the demo, the SRO provides IMA with the KPI that it wants to be estimated. As mentioned 
before, the demo showcases a Cassandra-DHT type of service. It also has a second application, which 
is a Video-on-demand Service based on Dash Price Chart (DASH). 

As seen in Figure 28, upon receiving the KPI from SRO (step 1), the intelligent IMA recovers (step 2) 
from the infrastructure providers the full feature set (i.e., the measurements related to the 
infrastructure) already monitored by the VIM/WIM. Figure 28 suggests the usage of local databases at 
infrastructure providers to store monitoring data, but depending on the monitoring technology within 
infrastructure providers, IMA might assume the responsibility of storing it.  

After step 3, with all monitoring data at hand (full feature set), the IMA performs feature selection 
using machine learning. It selects the features to monitor using the Service KPI as target metric, i.e., it 
defines the composition of the selected feature set with K essential metrics that better represent the 
given Service KPI and executes some tasks in parallel as a consequence of step 4. The set of K features 
and the respective monitoring history is returned to SRO (step 5), so it can train its KPI Estimation 
module, at the same time that IMA adjusts the monitoring tools deployed within infrastructure 
providers. As mentioned before, the intelligent IMA deploys two monitoring instances, one responsible 
for collecting the full feature set (step 6) at longer time intervals (mainly used to support feature 
selection) and a second instance responsible for delivering live monitoring data corresponding to the 
selected feature set (step 7). The definition of both collecting intervals can be explicitly specified by 
the tenant or by analysing learning curves. 

Figure 28 also suggests a direct communication from VIM/WIM Monitoring module towards the SRO 
to deliver live monitoring data (step 8). This demo implementation uses a Pub/Sub system, based on 
Apache Kafka, which removes several push cycles from the overall monitoring system. Basically, we 
assume that required adaptations in the monitored data is performed locally at the infrastructure 
providers, for example, by deploying the functionalities of IMA in a distributed manner among the 
slice parts composing slices. Such design contributes to the deployment of real time orchestration of 
slices. 
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Figure 28. Intelligent IMA workflow for feature selection. 

Figure 29 updates the elasticity workflow presented in Deliverable D5.1 of NECOS, presenting the 
machine learning extensions as green steps. This figure depicts the four steps SRO performs in this 
demo to support elasticity. This figure also accommodates the proposed communication directly from 
the VIM/WIM monitoring systems towards the KPI Estimation module of the SRO, as mentioned above. 

 

Figure 29. Intelligent SRO workflow for elasticity. 

It is important to highlight the possible outcomes of step 3, the decision can indicate the need for 
vertical and/or horizontal elasticity, both including upgrade and/or downgrade of infrastructure 
resources. But, another important outcome of step 3, is to keep the slice in its current form, i.e., 
returning the loop to KPI Estimation (step 1) of the intelligent SRO. This latter case represents the 
scenario in which the optimization of slice flavours indicates that current slice arrangement is the best 
among the available options, for example. 

 Results 
The key aspect of this demo related to intelligent monitoring and orchestration to provide elasticity. 
In this context, the demo provided an environment that is capable of evaluating total elasticity 
execution time, from the moment when elasticity was defined as necessary, up to the moment when 
it is completely executed. The demo also allowed to measure the effectiveness of honouring the SLA 
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agreed between the Tenant and NECOS. Finally, given the machine learning nature of the demo, it was 
also possible to evaluate the accuracy of the proposed solution. For example, measuring how often 
the proposed mechanism mistakenly changes the infrastructure of slices. Figure 30 is useful to evaluate 
how close to the Observed Response Time is the Estimated Response Time of our neural network. It is 
also important to mention that the estimated values are a forecast of thirty seconds in the future. The 
dynamicity of the response times is due to a load generator that controls the instantiation of end users 
consuming the service offered by the DHT system. As seen from Figure 30, the set of estimated 
response times closely approximates the set of observed response times, bringing accuracy to the 
elasticity forecasts.  

 
Figure 30. Estimated Response Time versus Observed Response Time as a function of the number of 

end users consuming the DHT service. 

Figure 31 illustrates a vertical elasticity upgrade triggered by our machine-learning-based orchestrator. 
The SLA is defined as response times below 180 ms, so whenever the orchestrator forecasts that such 
an SLA will be violated in the next 30 seconds, the elasticity process is triggered to proactively avoid 
the violations. As can be seen in Figure 31, a few seconds after 18:18:00 the orchestrator foresees an 
SLA violation (blue star) and triggers elasticity. Since the elasticity is proactively triggered and the slice 
is modified to the slice flavour that fixes the foreseen violations, the process takes just a few seconds 
to be concluded. It is also possible given the fact it is a vertical elasticity and no new slice parts are 
included in the end-to-end slice and no new VIM/WIM needs to be instantiated, a case in which the 
process would last longer. After the vertical elasticity, it is possible to check that the observed response 
times are maintained under the specified SLA, even with the number of end users growing, i.e., the 
pressure over the service is increasing. 
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Figure 31. Estimated Response Time versus Observed Response Time as a function of the number of 

end users consuming the DHT service. 

Other aspects closely related to monitoring that this demo allows to evaluate include the time required 
to perform feature selection, per slice and per Service KPI. It also opens the opportunity to investigate 
the impact in terms of accuracy of feature selection and SRO estimations, versus the time interval in 
which the entire (full) infrastructure metrics are monitored. Figure 32 details such trade-offs, 
illustrating how the frequency interval for the collection of the entire set of infrastructure metrics can 
influence in the quality of the estimations by the orchestrator, and also the number K of metrics 
selected by the IMA module. From Figure 32 it is possible to check that at around 15 metrics (for the 
scenario being considered in the DHT service) the accuracy of the machine learning model stabilizes. 
As a consequence of this evaluation, in the demo we consider K=15. It is also possible to check that the 
longer the collection interval, the worse is the accuracy of the machine learning model and this is easily 
explained by the fact that it “reduces the resolution of the picture” the monitoring system takes from 
the infrastructure composing the slice. Such effect can be controlled by the fact that online learning 
can be used to update the machine learning model along the lifetime of the slice, using the live 
monitoring data to not only forecast thirty seconds in the future, but also improving the trained model. 

 

Figure 32. Accuracy of the machine-learning model (measured as NMAE) as a function of the 
frequency interval for the collection of the full feature set and the number K of features selected. 
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As a consequence of the feature selection performed by the intelligent IMA module, this demo is also 
capable of showing the improvement regarding the movement of monitoring data from the 
Infrastructure (i.e., from the VIM/WIM Monitoring via IMA) towards the SRO, i.e., it is possible to 
evaluate the gains in terms of overhead reduction that intelligent feature selection assigns to NECOS. 
Figure 33 presents the volume of data transferred from the IMA towards the SRO during the period of 
one hour, for both the full feature set approach and the selected feature set approach. As seen in 
Figure 33, the volume of data transferred for K=15 increases much slower than the amount of data 
transferred for the full feature set, such behaviour assigns better scalability for NECOS since it monitors 
in a per slice basis. 

 

Figure 33. Comparison of the volume of data transferred by the monitoring module (IMA) towards 
the orchestrator (SRO) while monitoring the full feature set once a second versus the selected 

feature set once a second for K=15 in the slice with the DHT Service.  
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 Wireless Slicing Services (WISE) 
In this demonstration, multiple slice allocations are requested via one Slice Provider hosted by UFPA 
and the Resources Providers participating at the UFRN, as depicted in Figure 34. 

 

Figure 34. Instantiation of WISE on the experimental infrastructure. 

1.1.1 Objectives 
The Wireless Slicing sErvices (WISE) demo shows the NECOS LSDC capabilities in expanding the cloud-
network slinging concept towards wireless network domains. In general terms, the WISE [Maxweel, 
2019] solution outperforms the state-of-the-art in WiFi-shared access by deploying an end-to-end 
slice‐defined approach, enabling WLAN networks tailored to serve the demands of specific scenarios 
and applications needs. Moreover, WISE allows carriers to be capable of both managing and controlling 
home-premised off-the-shelf WiFi routers at the runtime by harnessing a fully softwarized approach. 
The WISE solution addresses the gaps of existing WiFi sharing tools, such as the widely used FON5 
global WiFi network, which only allows traffic isolation and differentiated services at the CPE premises, 
as well as only permits system reconfigurations on-site (fully customer-centric). 

Contrary to the FON WiFi sharing service fully deployed within WiFi router premises, WISE turns off-
the-shelf WiFi routers into a simple CPE, focused on provisioning WiFi access to mobile devices through 
different virtual networks. The WISE WiFi sharing control services run out of the CPE, namely in virtual 
CPE applications running at edge node premises. Thus, all incoming traffic that belongs to different 
virtual WiFi networks must be subjected to respective virtual network functions before going forward. 
In light to achieve this, the legacy WISE solution relies on external technologies to provide all the 
necessary resources. The idea behind harnessing the NECOS hub of services (i.e., the NECOSization of 
the WISE approach), stands to rely upon the LSDC approach for orchestrating and managing all 
necessary resources so that the WISE solution can run as a service. Thus, NECOS foresees to provide 
WISE-enabled WiFi sharing systems with capabilities for end-to-end service-oriented networking 
services, including full isolation and auto-scaling, as well as customization and control at runtime. The 
goal of the WISE demo is to assess the LSDC approach performance in a lab-premised testbed deployed 

                                                           
5 http://fon.com/ 
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in the UFRN's REGINA-Lab premises, which hosts all NECOS components in the core DC. Figure 35 
depicts the testbed configuration of the WISE demo. 

 
Figure 35. Testbed configuration of the WISE demo. 

The WISE demo considers a scenario in which carriers exploit public WiFi coverage coming from 
residential hotspots to support 5G's ultra-dense networking. For instance, distinct carriers may want 
to purchase WISE-enabled WiFi sharing systems to complement their cellular networks with 
broadband wireless access featuring end-to-end isolation, customization and independent service 
provisioning. Such a WiFi-assisted network densification proceeds in two stages: i) by harnessing the 
NECOS LSDC approach to orchestrate the necessary cloud-network slice resources all the way from the 
core DC to the WiFi CPE. More specifically, the NECOS LSDC approach takes slicing template 
specifications for building (and decommissioning afterwards) a pair of containers at both edge DCs and 
the core DC in a per virtual WiFi granularity, each pair hosting same chaining WISE VNFs; one container 
in the edge DC to host the WISE Agent application; and, one container in the core DC to run the WISE 
Controller. In the end, the NECOS LSDC approach builds network slices connecting all the cloud slice 
parts and the WiFi virtual networks.  

The WISE Controller relies on particular VIM and WIM that NECOS provides to the carrier in order to 
enable the dynamical control and management of all the computing, storage, and network resources 
within the entire cloud-network slicing topology; ii) by applying end-to-end cloud network slice 
definitions on top of the WISE-enabled Wi-Fi sharing technology, with the aim of offering multi tenancy 
and multi service support for a wide range of services. 

On the basis of the Wi-Fi slicing concept, typical WiFi WLAN-sharing services implement virtualization 
to accommodate two virtual networks within the common Wi-Fi spectrum for shared connectivity. 
Similarly, NECOS maps the description of the desired service capabilities (provided as YAML file) into 
two end-to-end cloud-network slices: (i) a “public” one, devoted to community Internet access, and 
(ii) a “private” one, for particular devices attached to the Wi-Fi owner’s network. Each demanded cloud 
network slice comprises a set of dc and network slice parts as follows: 
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● A public and a private WiFi slice parts, consisting of virtual access points (vAPs) running on top 
of an OpenWRT-empowered off-the-shelf CPE;  

● Eight (8) Edge dc slice parts consisting of different NFV service chaining instances running 
locally at mini dc equipment premises (a laptop), in the form of vCPE applications; 

● Eight (8) WAN network slice parts consisting of the required virtual networking infrastructure 
(e.g., nodes, links, interfaces, etc.) for proper edge-to-core cloud slicing connectivity;  

● Eight (8) core dc slice parts consisting of the required computing and storage resources to 
accommodate additional services such as a general-purpose software application. 

Two off-the-shelf Wi-Fi router TP-LINK TL-WR1043ND v3 (CPU of 720 MHz, and RAM of 64 MB), running 
the OpenWRT v18.069 and the WAN Slice Controller implementation, is adopted to provision the Wi-
Fi-sharing technology. A laptop DELL VOSTRO 5480 (Core I7-5500U, RAM 8GB, HDD 500GB) 
implements the edge DC, whilst a two clustering rack servers PowerEdge R7425 (2AMD 32-core EPYC 
processors, 64GB DIMM DDR4 RAM, 4 HDD 2TB, and 4 Gb Ethernet network cards) compose the core 
cloud. In short, the WAN Slice Controller creates vAPs that can run on a physical router to provide 
service-oriented WLANs for specific applications. An SDN infrastructure featuring 6 OpenFlow-enabled 
Mikrotik 951G-2HnD (CPU of 600 MHz, and RAM of 128 MB) meshed switch nodes provide wired 
connectivity between the edge and core DCs. 

 Workflow 

 

Figure 36. WISE workflow. 

As shown in Figure 36, the demo has seven steps which are detailed below. 

● Step 1: Slice Activator receive a YAML file with slice and service description (based on NECOS 
information model) and requests an end-to-end cloud-network slice deployment to slice 
builder; 

● Step 2: Slice Builder interacts with already deployed DC/WAN controllers in order to create 
different slice parts (including WiFi, network and edge/core DC slice parts); 

● Step 3: DC/WAN deploys VIM/WIM on demand in the edge DC, network and core DC domains; 
● Step 4: WAN Controller communicates with WISE edge DC controller to deploy two new slices, 

one for the public and another for private purposes, upon the network domain; 
● Step 5: WAN Controller associates the deployed WIM with the public and private slice parts; 
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● Step 6: Slice Builder informs SRO about Slice creation process; 
● Step 7: SRO deploy slice services in each VIM/WIM based on slice description from Service 

Activator. After that, SRO can manage cloud, network and WiFi resources in the edge DC, wan 
and core DC. 

 Results 
The mains KPIs addressed in this demo are both the average slice provisioning time (KPI 4) in seconds 
(during the creation and decommission workflows) and the monitoring-data availability (KPI 7), in 
terms of the number of control-plane signalling exchanges, to estimate the networking cost impact. 

In order to show the results concerning the KPIs 4, we collect the times that the LSDC approach devotes 
to provisioning all the cloud-network slices during the course of the testbed experiments. Figure 37 
sketches the total provisioning times to create, config and decommission all cloud network slices. 

 
Figure 37. Average provisioning time to build and decommission 8 cloud-network slices in the 

testbed experiments. 

The numerical analysis of the results obtained reveals that the NECOS LSDC approach spends on 
average 57.20 seconds devoted to VIM-centric operations (cloud network slice part), 25.26 seconds to 
carry out WIM-centric operations (network slice part), and 60.4 seconds to boot up the service 
delivery. Thus, a cloud-network slice instance creation raises a total provisioning time of 2.38 minutes 
on average (a peak time of 2.73 minutes) in the lab-premised testbed experiments. In regards of the 
decommission time, the NECOS LSDC approach takes slightly less than one minute (50.63 seconds) on 
average, raising a peak of 1.05 minutes in the worst case. 

In order to address the KPI 7 analysis, we collect all the signaling load (in bits) entailing cloud-network 
slice creation and decommissioning workflows during the course of the testbed experiments. This 
analysis play a key role by the importance in estimating the cost that the NECOS LSDC approach impacts 
in the whole system, in response to carrying out the cloud-network slice creation and decommissioning 
workflows. The Figure 39 depicts the KPI 7 results. 
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Figure 38. Total signalling load impact to create and decommission cloud-network slice instances 

during the course of the testbed experiments. 

On observing the results of Figure 38, the testbed reveals a slight difference in the total resource 
enforcement signaling load impacting the experiments. The numerical analysis exhibits that the NECOS 
LSDC approach requires a signaling load of 37,363 bits on average to create all end-to-end cloud-
network slice instances all the way from the core DC to the WiFi CPE. During the creation of the first 
cloud-network slice, the justification for the best resource enforcement signaling latency performance 
(35,640 bits) comes from the higher amount of available resources for the NECOS components to 
operate. Hence, the total latency coming from the resource enforcement signaling load needed to 
create the first cloud-network slice is of 22.24 seconds. From the first cloud-network slice on, the total 
resource enforcement signaling load latency exponentially increases, achieving a maximum of 33.85 
seconds to create the cloud-network slice 8, since resources are progressively exhausted. 

For what concerns the cloud-network slice decommissioning, the total signaling load behaves in the 
opposite way, since resources return to available condition progressively with the accumulative 
resource releasing. Thus, cloud-network slice 8 decommissioning performs better than the rest of the 
cloud-network slices, by exchanging a total of 17,299 bits in the whole system. On the other hand, the 
cloud-network slice 1 shows worst decommissioning operation performance through exchanging a 
total of 18,691 bits (7.45% of additional signaling load). On average, the LSDC approach spends a 25.47 
seconds on average for decommissioning a cloud-network slice instance in our lab-premised testbed, 
from 27.03 seconds in the first cloud-network slice instance to 23.51 seconds in the very last one. 

It is worth highlighting that the cloud-network slice booting time does not include WISE service 
deployment. Aside from that, the WISE demo adopts the same VIM and WIM technologies already 
running from the beginning of the tests for all of the cloud-network slice instances. Finally, WISE 
achieves a significant reduction in provisioning times when compared with the MUSTS demo for 
instance for the reason of not needing to deploy VIM and WIM instances as on-demand services. 

As a future remark, we will carry out new experiments considering WISE service deployment, in 
addition to cloud-network slicing creation and decommission workflows, in different scenarios. Thus, 
we expect to get new insights by observing the incidence of more realistic provisioning times and costs. 
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 Acceptance Verification 
As pointed out in subsection 2.3, the NECOS acceptance requires that the tests for all prioritized 
features are complete, i.e., the solution process is receiving entries correctly, processing as specified 
and returning correct outputs. These results are summarized in Table 5, for each feature a specific test 
was conducted in one or more demonstrations and the results using the KPIs were listed as verification 
artefacts. 

Table 5. Acceptance verification. 

Features KPI Test Verification Artefacts 

Slice Provisioning 
KPI 4 - Average slice 
provisioning time (in 
seconds) 

Execute the Create Slice 
Workflow. 

Figure 14 from demo 
MUSTS and Figure 37 from 
demo WISE 

Isolation 
KPI15 - Slice isolation 
index  

To overload the resources of a 
given slice without affecting the 
resources of the other slice. 

Figure 16 from demo 
MUSTS 

Management 
KPI3 - Average service 
provisioning time (in 
seconds) 

To deploy the service from the 
tenant. 

Figure 15 from demo 
MUSTS and Figure 24 from 
demo ELSA 

Elasticity 
KPI1 - Average elasticity 
response time (in 
seconds) 

Measure the time between the 
trigger for the elasticity and the 
time to accomplish it. 

Figure 17 from demo 
MUSTS and Figure 31 from 
demo MLO 

Scalability 

KPI 4 - Average slice 
provisioning time (in 
seconds) during the 
Resource Discovery 
phase. 
 
 

Perform the Resource Discovery 
phase in Create slice workflow, 
considering large slices spanning 
over multiple providers with 
numerous resources. 

Table 4 from demo MARK 
 

Monitoring 
KPI 7 - Monitoring-data 
availability 

Show the amount of data from 
IMA collected in each slice over 
the slice life-time. 

Figure 18 from demo 
MUSTS, Figure 33 from 
demo MLO, and Figure 38 
from demo WISE 

VIM-independence 
KPI 4 - Average slice 
provisioning time (in 
seconds) 

Collect the time spent to deploy 
different VIMs in the same Slice. 

Figure 19 from demo 
MUSTS and Figure 38 from 
demo WISE 

Bare-metal slice 
KPI 9 - Physical Server 
Utilization 

Collection of the measurements 
related to the different (physical) 
resources that form the slice 
parts. Demonstrating that 
overloading one end-to-end Slice 
does not affect the other Slices in 
the same Resource Provider, as 
they use a disjointed set of 
physical resources. 

Figure 27 from demo ELSA 
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 Conclusion 
This document described the deployment, tests, and validation processes of the NECOS platform with 
the related results. The activities were organized and executed in a way that WP6 acted as an 
integration point for the other technical work packages, as shown in Figure 39. The scenarios and 
requirements from WP2 were used to create demonstrations, the distributed architecture from WP3 
and the model and APIs from WP4 allowed the creation of a geographically distributed testbed to show 
the flexibility and power of the NECOS architecture, APIs, and model. Finally, the prototypes from WP5 
made possible to test how the LSDC concept could be demonstrated in meaningful scenarios.  

 

Figure 39. WP6 as an integration Work Package. 

As presented in Figure 40, the initial seven (7) PoC implementations from D6.1 were used as a base for 
the final five (5) demonstrations: MUlti-Slice/Tenant/Service (MUSTS), Marketplace (MARK), 
Experiments with Large-scale Lightweight Service Slices (ELSA), Machine-learning based orchestration 
of slices (MLO), Wireless Slicing Services (WISE). Altogether, the different NECOS platform instances 
featured 2 Slice Providers, 2 Marketplaces, 7 Resource Providers, and integration with FED4FIRE 
testbeds uses as Resources Providers, in multi-site deployments, resulting in the first cloud network 
slicing embodiments between Europe and Brazil. 

 

Figure 40. NECOS validation overview. 
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Eight prioritized features were validated during the Create Slice, Elasticity and Decommission 
workflows. For each one of these features, at least one KPI was presented in the results demonstration 
section, for a total of 6 validated KPIs. 

The system tests were performed by each demonstration, allowing us to use the related results as 
input for the section describing the Acceptance Verification. The latter summarized the tests and 
results regarding the eight NECOS prioritized features in Table 5, where all the 8 prioritized features of 
NECOS were validated via the execution of the NECOS workflows, altogether contributing to the overall 
validation of the NECOS propositions.  
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